www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Abbildung
Lineare Abbildung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Übungsaufgabe 2
Status: (Frage) beantwortet Status 
Datum: 22:05 Do 04.12.2008
Autor: sethonator

Aufgabe
f : [mm] R^2 [/mm] -> R, f(x, y) = x + y + 1

Ist diese Abbildung linear?

Wie sieht das denn hier aus?

f(u+v) = f(x) ???

Das ist doch nie im Leben eine lineare Abbildung, oder?

Wie kann ich das beweisen?

Danke!!

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 04.12.2008
Autor: MartinP

Eigentlich brauchst du diesen Nachweis gar nicht erst bringen (laut unserem Übungsleiter) ,weil du als erstes noch prüfen musst, ob f(0)= 0 oder in dem Fall ob f(0,0)=0 ist. Eine Funktion heißt nämlich nur dann linear, wenn diese notwendige Bedingung erfüllt ist.

PS: Das solltest du bei der a) auch noch mit prüfen

Bezug
                
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Do 04.12.2008
Autor: sethonator

Achso,

das hatte unsere Übungsleiterin gar nicht erwähnt.

Ich danke Dir!

Bezug
                
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Do 04.12.2008
Autor: sethonator

Noch eine kurze Frage dazu.

Bei dem Beispiel hier ist f(0,0) = 1, und deswegen ist die Abbildung nicht linear?

Bezug
                        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Do 04.12.2008
Autor: MartinP

Auch wenn wir in der Schule f(x)=ax+b als lineare Funktion bezeichnet haben, so ist diese Linearität eigentlich nur für b=0 gegeben.

Die Bedingung f(0)=0 ist, wie ich schon gesagt habe, NOTWENDIG, also wenn die nicht erfüllt ist ist es niemals linear.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]