Lineare Abbildung HILFE < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:03 Fr 21.01.2005 | Autor: | Alice_U |
Hi, ich hoffe mir kann hier jemand helfen, ich komme mit dieser Aufgabe einfach nicht weiter, dabei ist die Lösung schon bekannt. Ich komme einfach nicht auf die richtigen Lösungsweg!!??
Danke Alice
Aufgabe : Eine lineare Abbildung f : R2 ->R2 habe bezüglich der Basis
B = { (1,-1)(-3,2)}
die Abbildungsmatrix
A = [mm] \pmat{ 1 & 1\\ 0 & -2}
[/mm]
(a) Der Vektor x habe bezüglich der Standardbasis die Darstellung x = (1, 1) Bestimmen Sie die Koordinaten von f(x) bezüglich der Standardbasis.
(b) Bestimmen Sie die Abbildungsmatrix B von f bezüglich der Standardbasis.
Lösungen: (a) f(1, 1) = (−19, 15)T, (b) B = [mm] \pmat{ -9 &-10\\ 7 & 8 }
[/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:53 Fr 21.01.2005 | Autor: | DaMenge |
Hi,
du kannst entweder die b) zuerst machen und dann einfach für die a) x einsetzen oder du berechnest bei a) erst die Koordinatendarstellung von x bzgl B und setzt dann in A ein - und dann wieder zurück in Standardbasis umrechnen - dies sind immer einfache Gleichungssysteme, die du lösen musst.
ich denke, du solltest aber die b) zuerst machen und dann x in Standardbasis einfach einsetzen...
für die b) musst du passende Transormationsmatrizen suchen, so dass:
S=T*A*T^-1 die Darstellungsmatrix btgl. Standardbasis ist.
dein A gibt dir Vektoren bzgl. Basis B aus, d.h. T muss diese dann noch in Standardbasis umwandeln - also wenn du (1,0) aus B in T hineinsteckst, soll (1,-1) raus kommen und wenn du (0,1) aus B hineinsteckst, soll (-3,2) rauskommen - wie sieht also dein T aus?
naja, das ist einfach:
$ [mm] T=\pmat{1& -3\\-1&2} [/mm] $
dann musst du noch T^-1 berechnen (das macht nämlich gerade das umgekehrte: es verwandelt einen Vektor bzgl Standardbasis ind einen bzgl Basis B um) und dann war's das auch schon, dann musst du nur noch S ausrechnen !
du musst also ein bisschen Basistransformieren...
(siehe Mitschrift/Buch/Skript)
viele Grüße
DaMenge
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:17 Sa 22.01.2005 | Autor: | Alice_U |
Danke, du hast mich wirklich weiter geholfen!!!
|
|
|
|