Lineare Abbildung bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:06 Do 11.05.2006 | Autor: | maggi20 |
Aufgabe | Bestimmen Sie eine lineare Abbildung [mm] f:R^3 [/mm] nach [mm] R^4 [/mm] mit
(a) [mm] f(R^3)=<(1,2,0,4), [/mm] (2,0,-1,3)>
(b) Ke(f)=<(1,2,3),(1,2,4)
Gibt es eine lineare Abbildung, die beide Bedingungen (a),(b) erfüllt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Wie gehe ich da vor? Bitte, bitte helft mir. Ich dachte ich nehme di ekanonische Basis von [mm] R^3 [/mm] und und kriege mit der Matrix die Skalare heraus. Aber was mache ich mit der vierten Komponente in [mm] R^4?
[/mm]
Liebe Grüsse
Magda
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:36 Do 11.05.2006 | Autor: | DaMenge |
Hallo und ,
Du suchst eine lineare Abbildung bzw. suchst du die Darstellungsmatrix einer linearen Abbildung von [mm] $f:\IR^3\to\IR^4$ [/mm] , d.h. du musst eine 4x3 Matrix heraus bekommen,wenn du die Abbildung als Matrix angeben willst.
(es würde aber auch ausreichen die Bilder einer Basis zu beschreiben)
Dein Ansatz die Bilder der kanonischen Basis entsprechend zu wählen ist richtig und man weiß ja : Die Bilder der Basisvektoren sind die Spalten der Darstellungsmatrix.
Also : wenn du [mm] $f(e_1)=\vektor{1\\2\\0\\4}$ [/mm] und [mm] $f(e_2)=\vektor{2\\0\\-1\\3}$ [/mm] wählst und den dritten Basisvektor entweder auf Null oder eine linearkombination der beiden vorherigen Bilder wirfst, dann ist das Bild sicher (nur) das, was in a) verlangt.
(und du kannst die drei Spalten der Matrix direkt angeben)
bei der b) geht es im Prinzip ähnlich - nur dass man jetzt Ursprungsvektoren gegeben hat und weiß, worauf sie abgebildet werden.
Also : suche dir einen dritten (zu den beiden in b) gegebenen Vektoren linear unabhängigen) Basisvektor [mm] b_3 [/mm] des [mm] $\IR^3$
[/mm]
(zum Beispiel der kanonische [mm] e_1 [/mm] )
und dann setze einfach: [mm] $f(b_1)=\vektor{0\\0\\0\\0}$ [/mm] und [mm] $f(b_2)=\vektor{0\\0\\0\\0}$ [/mm] und [mm] $f(b_3)=b_3$ [/mm] (oder irgendwas, was nicht 0 ist)
Dies reicht eigentlich schon als Beschreibung der Abbildung aus, aber wenn du schon weißt, wie die Darstellungsmatrix bzgl dieser neuen Basis aussieht, dann kannst du diese natürlich auch noch schnell angeben.
bei c) schaue dir doch mal die Bild-Kern-Formel genau an.
viele Grüße
DaMenge
|
|
|
|
|