www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildung, konvex
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Lineare Abbildung, konvex
Lineare Abbildung, konvex < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung, konvex: Frage: So richtig?
Status: (Frage) beantwortet Status 
Datum: 18:16 Do 27.01.2005
Autor: Nette

Hallo mal wieder!

Ich hab folgende Aufgabe:
T: [mm] \IR^{n} \to \IR^{n} [/mm] sei eine lineare Abbildung. Ich muss zeigen  A [mm] \subset \IR^{n} [/mm] konvex [mm] \Rightarrow [/mm] T(A) konvex.

Die Definition von konvex ist ja wie folgt:
A konvex [mm] \Rightarrow [/mm] a,b [mm] \in [/mm] A: (1-t)a+tb [mm] \in [/mm] A  für alle t [mm] \in [/mm] [0,1]

Ich muss doch jetzt zeigen, dass gilt:
T((1-t)a+tb) [mm] \in [/mm] T(A), oder?

Folgendes hab ich jetzt gemacht:
Da T linear ist, gilt ja:
T((1-t)a+tb)=(1-t)T(a)+tT(b)
Beide Summanden sind doch dann Element von T(A), daraus folgt doch dann, dass die Summe auch Element von T(A) und damit ist A konvex.

Kann ich das so machen?

Gruß
Annette

        
Bezug
Lineare Abbildung, konvex: Recherchenfund
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Do 27.01.2005
Autor: Gero

Hi Annette,

ich hab da was gefunden, vielleicht kannst du damit was anfangen:
"Menge M konvex:
für alle a,b aus m ist r*a+(1-r)*b aus M für alle 0 kleiner r kleiner 1.
(Anschaulich: mit a,b liegt auch die Verbindungsstrecke in M)

A konvex
x, y aus T(A); es ex. a,b aus A mit x=T(A) und y=T(b)
0 kleiner r kleiner 1
r*x+(1-r)*y==r*T(a)+(1-r)*T(b)= (da T linear)
=T(r*a+(1-r)*b);
A konvex folgt r*a+(1-r)*b aus A, also T(r*a+(1-r)*b) aus T(A).
q.e.d. "
Hab´s mir aber noch nicht richtig angeschaut!

Gruß             Gero

P.S.: Bis morgen!

Bezug
        
Bezug
Lineare Abbildung, konvex: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Do 27.01.2005
Autor: andreas

hi

> Ich hab folgende Aufgabe:
>  T: [mm]\IR^{n} \to \IR^{n}[/mm] sei eine lineare Abbildung. Ich
> muss zeigen  A [mm]\subset \IR^{n}[/mm] konvex [mm]\Rightarrow[/mm] T(A)
> konvex.
>  
> Die Definition von konvex ist ja wie folgt:
>  A konvex [mm]\Rightarrow[/mm] a,b [mm]\in[/mm] A: (1-t)a+tb [mm]\in[/mm] A  für alle
> t [mm]\in[/mm] [0,1]
>  
> Ich muss doch jetzt zeigen, dass gilt:
>  T((1-t)a+tb) [mm]\in[/mm] T(A), oder?

nein, das ist ein trugschluss. du willst doch zeigen, dass $T(A)$ konvex ist, also das zu zwei punkten aus $T(A)$ auch deren verbindungstrecke in $T(A)$ liegt!

  

> Folgendes hab ich jetzt gemacht:

>  Da T linear ist, gilt ja:
>  T((1-t)a+tb)=(1-t)T(a)+tT(b)
> Beide Summanden sind doch dann Element von T(A), daraus
> folgt doch dann, dass die Summe auch Element von T(A) und
> damit ist A konvex.

wenn du das in die andere richtung ausfziehst wird es richtig. die lösung kannst du im prinzip bei Gero in der mitteilung lesen. du kannst ja mal schauen, ob du damit was anfangen kannst und dich dann nochmal melden, wenn dir etwas unklar ist!

grüße
andreas

Bezug
                
Bezug
Lineare Abbildung, konvex: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Sa 29.01.2005
Autor: Nette

Hi!

Danke.
Hab´s jetzt, glaub ich, verstanden.

Gruß
Annette

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]