www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Lineare Abbildungen
Lineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Aufgabe 1.4
Status: (Frage) beantwortet Status 
Datum: 20:20 Sa 06.05.2006
Autor: Ben2007

Aufgabe
Welche der folgenden Abbildungen sind linear:

[mm] \IR4 [/mm] -> [mm] \IR4 [/mm]   (x,y,w,z) -> (3x+y/6,4z-2y,z,w)

Ich würde es gerne mit dem gaussischen Verfahren lösen....kann ich das machen?
und kann ich dann skalare beliebig wählen, dass ich spter das ergebnis bekomme?

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Sa 06.05.2006
Autor: DaMenge

Hallo,

also mit Gauß löst man normaler Weise Gleichungssysteme bzw. wandelt entspr. Matrizen in obere Dreiecksgestalt u.ä.

Hier weißt du jedoch noch gar nicht, ob du die Abbildung als Matrix schreiben kannst, denn genau das ist die Aufgabe.
(Jede lineare Abbildung ist nach Wahl von Basen eindeutig als Matrix darstellbar und umgekehrt !)

Also was du konkret zeigen musst:

sei [mm]f: \IR4[/mm] -> [mm]\IR4[/mm]   f(x,y,w,z)=(3x+y/6,4z-2y,z,w)

Dann musst du zeigen, dass gilt:
[mm] $f(\vektor{x\\y\\w\\z}+\vektor{x'\\y'\\w'\\z'})=f(\vektor{x\\y\\w\\z})+f(\vektor{x'\\y'\\w'\\z'})$ [/mm]
und:
[mm] $f(\lambda *\vektor{x\\y\\w\\z})=\lambda [/mm] * [mm] f(\vektor{x\\y\\w\\z})$ [/mm] für beliebiges [mm] $\lambda\in\IR$ [/mm]

wenn beides gilt, ist die Abbildung f linear

viele Grüße
DaMenge

Bezug
                
Bezug
Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Sa 06.05.2006
Autor: Ben2007

okay danke!
Das verstehe ich soweit, aber ich verstehe nicht, wie ich auf die Zahlen komme, also sprich 3x y/6 .... :(

Bezug
                        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Sa 06.05.2006
Autor: Bastiane

Hallo!

> okay danke!
>  Das verstehe ich soweit, aber ich verstehe nicht, wie ich
> auf die Zahlen komme, also sprich 3x y/6 .... :(

Also, du hast gegeben: f(x,y,w,z)=(3x+y/6,4z-2y,z,w) (wie auch immer das zu lesen sein mag - ist in der ersten Komponente der Zähler 3x+y oder nur y? Benutze doch bitte unseren Formeleditor!)

Nimmst du nun die beiden Vektoren [mm] \vektor{x\\y\\w\\z} [/mm] und [mm] \vektor{x'\\y'\\w'\\z'} [/mm] so ergibt sich:

[mm] f(\vektor{x\\y\\w\\z}+\vektor{x'\\y'\\w'\\z'})=f(\vektor{x+x'\\y+y'\\w+w'\\z+z'})=\vektor{3(x+x')+(y+y')/6\\4(z+z')-2(y+y')\\z+z'\\w+w'} [/mm]

und

[mm] f(\vektor{x\\y\\w\\z})+f(\vektor{x'\\y'\\w'\\z'})=\vektor{3x+y/6\\4z-2y\\z\\w}+\vektor{3x'+y'/6\\4z'-2y'\\z'\\w'}=\vektor{3x+y/6+3x'+y'/6\\4z-2y+4z'-2y'\\z+z'\\w+w'} [/mm]

Auf den ersten Blick sieht mir das schwer gleich aus. Hoffentlich habe ich mich nirgendwo vertippt, aber das Prinzip dürfte klar sein, oder?

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Sa 06.05.2006
Autor: Ben2007

Ah danke...ja jetz habe ich es verstanden.... mit dem "y/6" weiß ich elbst net was es heißt, weil es auch so da steht... aber danke, jetz hab ich es verstanden...
danke für die mühe - an einem samstag abend - aber das thema mag und kann ich nicht!

DANKE :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]