www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Lineare Abbildungen
Lineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:34 Fr 26.01.2007
Autor: PixCell

Aufgabe
Es sei A [mm] \in Hom(\IR^{3}) [/mm]  (die Menge der linearen Abbildungen des [mm] \IR^{3}). [/mm] Beweisen oder widerlegen Sie folgende Aussage.
Ist A(1,-1,-1) = (4,-1, 3), so gilt A(-2, 4, 2) = (8,-2,-6) und A( [mm] \bruch{3}{14}, -\bruch{3}{7}, -\bruch{3}{14} [/mm] ) = (4,-1, 3).

Hallo zusammen,
kann mir evtl. jemand einen Tipp geben, wie ich an diese Aufgabe rangehen kann? Ich habe nämlich ehrlich gesagt noch nicht mal so wirklich verstanden, was die obige Schreibweise eigentlich ausdrücken will.

Da ich noch weitere Aufgaben dieser Art zu bearbeiten habe, wäre ich froh, wenn mir jemand vielleicht einen Ansatz liefern könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank bereits im Vorraus für Eure Mühe.

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Fr 26.01.2007
Autor: Event_Horizon

Nun, mit "linear" ist doch schonmal ein guter Ansatz!




Außerdem kann man
A ist die Abbildung, also z.B. eine Matrix, die mit dem dahinterstehenden Vektor multipliziert wird.
Also schreiben wir mal so:


[mm] $A\vektor{1\\-1\\ -1} [/mm] = [mm] \vektor{4\\-1\\ 3}$ [/mm]

[mm] $A\vektor{-2\\4\\ 2} [/mm] = [mm] \vektor{8\\-2\\ -6}$ [/mm]

[mm] $A\vektor{ \bruch{3}{14}\\-\bruch{3}{7}\\ -\bruch{3}{14} }= \vektor{4\\-1\\ 3}$ [/mm]




Und jetzt kannst du zwischen den drei Gleichungen nach belieben irgendwelche Bedingungen für Lineare Abbildungen prüfen.



Es gilt z.B. auch: [mm] $A(\vec [/mm] b+ [mm] \vec [/mm] c)= [mm] A\vec [/mm] b + A [mm] \vec [/mm] c$ und : [mm] $A(\vec 0)=\vec [/mm] 0$

Subtrahieren  wir doch mal erste und letzte Gleichung:

[mm] $A\vektor{1\\-1\\ -1}-A\vektor{ \bruch{3}{14}\\-\bruch{3}{7}\\ -\bruch{3}{14} } [/mm] = [mm] \vektor{4\\-1\\ 3}-\vektor{4\\-1\\ 3}=\vec [/mm] 0$

Rechnen wir den linken Ausdruck noch etwas weiter:

[mm] $A\vektor{1\\-1\\ -1}-A\vektor{ \bruch{3}{14}\\-\bruch{3}{7}\\ -\bruch{3}{14} }=A\left( \vektor{1\\-1\\ -1}-\vektor{ \bruch{3}{14}\\-\bruch{3}{7}\\ -\bruch{3}{14} }\right)\neq A(\vec [/mm] 0) [mm] =\vec [/mm] 0$

Das heißt, zwischen der ersten und letzten Gleichung gibt es einen Widerspruch!



Damit ist die Aussage schon wider legt, denn aus der ersten Gleichung sollen beide anderen hervorgehen, aber die letzte macht ja schon einen Widerspruch.


Ich sehe im Übrigen keinen Widerspruch zwischen der ersten und zweiten, aber zwischen den letzten beiden: Multipliziere die zweite mal mit -3/14 durch, dann steht links in beiden Gleichungen das gleiche, rechts aber nicht!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]