www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Lineare Abbildungen
Lineare Abbildungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Bild(f), Kern(f)
Status: (Frage) beantwortet Status 
Datum: 18:24 Do 28.06.2007
Autor: vohigu

Aufgabe
Ich habe eine frage bezüglich Bild(f) und Kern(f) generell.

Kann mir jemand genau sagen wie ich Bild(f) und Kern(f) einer linearen Abbildung berechne?

        
Bezug
Lineare Abbildungen: Definitionen.
Status: (Antwort) fertig Status 
Datum: 18:49 Do 28.06.2007
Autor: kochmn

Servus Marius,

das Bild einer linearen Abbildung A
erhältst Du, indem Du Dir einen Satz Basisvektoren Deiner
Urmenge schnappst, sie durch A schickst und Dir den Aufspann
des Ergebnisses anschaust.

Der Kern der Matrix A (englisch: nullspace)
ist die Menge aller Vektoren der Urmenge, die von A auf das
0-Element der Zielmenge geschickt werden.

Um also zum Beispiel den Kern von

[mm] A:=\pmat{ 1 & 2 & 2\\ 3 & 4 & 4} [/mm]

zu bestimmen suchst Du alle Lösungen des LGS

[mm] \pmat{ 1 & 2 & 2\\ 3 & 4 & 4} \vektor{x \\ y\\ z} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Nochmal die Definitionen:
* Der Kern der Abbildung
    A: U [mm] \to [/mm] B
  ist Teilmenge von U:
    [mm] ker(A):=\{x\in U | A(x)=0 \} [/mm]
* Das Bild ist Teilmenge von B:
    [mm] bild(A):=\{y\in B | \exists x\in U : A(x)=y \} [/mm]

Liebe Grüße
  Markus-Hermann.


Bezug
        
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 28.06.2007
Autor: makw

Also. Sei A eine Matrix der linearen Abb. f.  Dann nimmst Du ein y aus deiner Definitionmenge und setzt ein Ay=b. Dann nach y ausrechnen und dann hast du die Basis fuer das Bild. Schreibe dann das Ergebnis in Linearkombination auf und schon bist Du fertig.
Die gleiche Methode nur mit b=0 ergibt dir die Basis des Kerns.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]