www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLineare Approximation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Lineare Approximation
Lineare Approximation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:58 Do 03.03.2011
Autor: kushkush

Aufgabe
Zu zeigen ist, dass die Lineare Approximation der Funktion [mm] $f(x)=\sqrt{x}$ [/mm] in $a=1$ [mm] $\sqrt{1.2} \approx [/mm] 1.1$ liefert. Mit Hilfe des MWS beweise die präzisere Aussage:

[mm] $\frac{12}{11}<\sqrt{1.2}<\frac{11}{10}$ [/mm]

Hallo,

Die lineare Approximation ist gegeben durch:

$f(x) [mm] \approx [/mm] f(a)+f'(a)(x-a) = [mm] 1+\frac{1}{2\sqrt{1}}(1.2-1)= [/mm] 1.1  $


MWS:

[mm] $\frac{f(a)-f(b)}{a-b}=f'(x)$ [/mm]

$ [mm] \frac{\sqrt{\frac{12}{1}}-\sqrt{\frac{11}{10}}}{\frac{12}{11}-\frac{11}{10}}= f'(x_{0})= \frac{1}{2\sqrt{1.2}}$ [/mm]

Aber das darf man wohl nicht einfach so einsetzen!

[mm] $\frac{11}{10} [/mm] = [mm] \sqrt{1.21}$ [/mm] also ist die rechte Seite zu beweisen doch sowieso überflüssig??


Ich habe diese Frage in keinem anderen Forum gestellt.


Danke und Gruss

kushkush

        
Bezug
Lineare Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Fr 04.03.2011
Autor: steppenhahn

Hallo,


> Zu zeigen ist, dass die Lineare Approximation der Funktion
> [mm]f(x)=\sqrt{x}[/mm] in [mm]a=1[/mm] [mm]\sqrt{1.2} \approx 1.1[/mm] liefert. Mit
> Hilfe des MWS beweise die präzisere Aussage:
>
> [mm]\frac{12}{11}<\sqrt{1.2}<\frac{11}{10}[/mm]
>  Hallo,
>  
> Die lineare Approximation ist gegeben durch:
>  
> [mm]f(x) \approx f(a)+f'(a)(x-a) = 1+\frac{1}{2\sqrt{1}}(1.2-1)= 1.1 [/mm]

Genau.


> MWS:
>
> [mm]\frac{f(a)-f(b)}{a-b}=f'(x)[/mm]
>
> [mm]\frac{\sqrt{\frac{12}{1}}-\sqrt{\frac{11}{10}}}{\frac{12}{11}-\frac{11}{10}}= f'(x_{0})= \frac{1}{2\sqrt{1.2}}[/mm]
>  
> Aber das darf man wohl nicht einfach so einsetzen!

Genau, man darf nicht einfach irgendwas für [mm] x_0 [/mm] einsetzen. Die Aussage des Mittelwertsatzes ist, dass es ein [mm] $x_0 \in [/mm] (a,b)$ gibt, so dass die Gleichung

[mm] $\frac{f(a) - f(b)}{a-b} [/mm] = [mm] f'(x_0)$ [/mm]

erfüllt ist. Du kannst folgendermaßen vorgehen:
Setze z.B. $a = 1.2$ und $b = 1$ (wir wollen eine Aussage über [mm] \sqrt{1.2} [/mm] , deswegen wählen wir das als eine Grenze. Wir wählen b = 1, weil wir da die Wurzel kennen) ein. Dann weißt du, dass [mm] $x_0 \in [/mm] (1 ,1.2)$ liegt. Durch den MWS gewinnst du eine Gleichung, wobei auf der einen Seite [mm] x_0 [/mm] vorkommt.

Nutze nun dein Wissen [mm] ($x_0 \in [/mm] (1, 1.2)$, Wurzel streng monoton wachsend), um den Term mit [mm] x_0 [/mm] nach oben / unten abzuschätzen. Du gewinnst so die Ungleichung [mm] $\sqrt{1.2} [/mm] < [mm] \frac{11}{10}$. [/mm]

Für die andere Ungleichung musst du dir andere Werte für a und b suchen.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]