www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Lineare Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Lineare Funktionen
Lineare Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktionen: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 26.06.2007
Autor: Markus1007

Aufgabe
Die Herstellung einer Substanz S erfordert bei Verfahren A die Kosten
[mm] K_A [/mm] (x) =2,8x+150  (EUR)
(x-Mengeneinheit von S), bei Verfahren B die Kosten
[mm] K_B [/mm] (x) =3x+220
Der Verkaufspreis von 1 ME (hergestellt nach Verfahren A) beträgt 4,70 EUR, von 1 ME (hergestellt nach Verfahren B) beträgt 5,00 EUR.
Ab welcher Anzahl von ME verspricht der Verkauf von der Substanz S (hergestellt nach Verfahren B) einen höheren Ertrag als der Verkauf von S (hergestellt nach A)?
(Grafische und rechnerische Lösung erbeten)  

Hey,

Ich hab mal wieder gar keinen Lösungsansatz!
Ich hab noch nicht ganz verstanden wie ich 4,7 und 5,0 in die Lösung mit ein Arbeiten muß!
Kann mir bitte jemand helfen?

Grüsse Markus

        
Bezug
Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Di 26.06.2007
Autor: Kroni

Hi,

> Die Herstellung einer Substanz S erfordert bei Verfahren A
> die Kosten
>  [mm]K_A[/mm] (x) =2,8x+150  (EUR)
>  (x-Mengeneinheit von S), bei Verfahren B die Kosten
>  [mm]K_B[/mm] (x) =3x+220
>  Der Verkaufspreis von 1 ME (hergestellt nach Verfahren A)
> beträgt 4,70 EUR, von 1 ME (hergestellt nach Verfahren B)
> beträgt 5,00 EUR.
>  Ab welcher Anzahl von ME verspricht der Verkauf von der
> Substanz S (hergestellt nach Verfahren B) einen höheren
> Ertrag als der Verkauf von S (hergestellt nach A)?
>  (Grafische und rechnerische Lösung erbeten)  
>
> Hey,
>  
> Ich hab mal wieder gar keinen Lösungsansatz!
>  Ich hab noch nicht ganz verstanden wie ich 4,7 und 5,0 in
> die Lösung mit ein Arbeiten muß!
>  Kann mir bitte jemand helfen?

So.

Wir wissen, dass es zwei Verfahren gibt, um eine Substanz S herzustellen:
Wir möchten x Mengeneinheiten von der Substanz S herstellen:

Verfahren A:

Kosten für die Herstellung:

[mm] $K_a(x)=2.8x+150$ [/mm]

Gewinn bei einer ME S: 4.70€/Mengeneinheit.

Verfahren B:

Kosten für die Herstellung:

[mm] $K_b(x)=3x+220$ [/mm]

Gewinn bei einer ME S: 5.00€/Mengeneinheit

Nun müssen wir gucken, wie wir Verlust und Gewinn zusammenbekommen:

Angenommen, wir stellen eine Einheit S nach Verfahren a her.
Das kostet uns:
2.8+150=152.8€

Wir machenan einer ME, die wir für 152.8€ herstellen aber auch einen Gewinn von 4.70€. Mach also insgesamt ein Verlust von 152.8€-4.70€=148,1€

Allgemein kann man das dann für Verfahren a so schreiben:

Einnahmen E(x)=G(x)-K(x), also: Einnahmen ist die Differenz aus Ausgaben K(x) und dem Gewinn pro Einheit.

Also: [mm] E_a(x)=4.70x-2.8x-150=1.9x-150 [/mm]

Das ist die Gewinnfunkton, die du hast.
Das selbe musst du jetzt nur mit Verfahren b machen.

Jetzt musst du dann nur noch guckn, wann sich die beiden Geraden schneiden. Denn [mm] E_b [/mm] liegt zunächst unter [mm] E_a, [/mm] dann schneiden die sich, und dann ist [mm] E_b [/mm] über [mm] E_a, [/mm] und danach ist gefragt.

LG

Kroni

>  
> Grüsse Markus


Bezug
                
Bezug
Lineare Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 26.06.2007
Autor: Markus1007

Hey,

Danke,genau das wollte ich wissen!
Den rest bekomm ich selbst hin.

Grüsse Markus

Bezug
                
Bezug
Lineare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Di 26.06.2007
Autor: Markus1007

Hey,

war nen bisschen voreillig mit meiner Antwort!
Ich habe gerechnet und vollgendes rausbekommen!

[mm] E_A [/mm] (x) =1,9x-150
[mm] E_B [/mm] (x) =2x-220
und dann beide Funktionen gleichgestellt!

[mm] 1,9x-150=2x-220\qquad [/mm] -2x
[mm] -0,1x-150=-220\qquad [/mm] +150
[mm] -0,1x=-70\qquad [/mm] /0,1
x=-700

Wenn ich nun y Auflöse bekomm ich bei der Probe zwei verschiedene Ergebnisse. Wo liegt denn mein Fehler? Wenn x nicht -700 sondern700 wär würde es passen!
Wer kann mir helfen?

Grüsse Markus

Bezug
                        
Bezug
Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Di 26.06.2007
Autor: Analytiker

Hi Markus,

Du hast einen Rechenfehler:

-> 1,9x - 150 = 2x - 220 | -2x | +150
-> -0,1x = -70 | :(-0,1)
-> x = 700

und alles ist gut!

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]