www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungLineare Funktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Lineare Funktionsschar
Lineare Funktionsschar < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktionsschar: Gedanken
Status: (Frage) beantwortet Status 
Datum: 15:37 Sa 19.01.2008
Autor: Blaub33r3

Aufgabe
Die lineare Funktionsschar bildet mit beiden Koordinatenachsen ein Dreieck.
Zeigen, Sie dass der Graph von [mm] f_{k} [/mm] dieses Dreieck unabhängig von k stets halbiert?

Hallo Leute,

[mm] f_{k}(x) [/mm] = [mm] -k^2x+k^3 [/mm]

wie finde ich hier den Ansatz, irgendwie komm ich auf keinen Gedanken..

Grüße Daniel

        
Bezug
Lineare Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Sa 19.01.2008
Autor: Blaub33r3

ahh gott, sry --- bitte closed das hier jemand....

ich hätte doch mal für 5 pfennig überlegen sollen ;)

A = [mm] \bruch{k^4}{2} [/mm]

daran erkennt man ja das das Dreieck halbbiert wird...unabhängig von k...
steht ja im Zähler...

Grüße Daniel

Bezug
                
Bezug
Lineare Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Sa 19.01.2008
Autor: Andi

Hallo Daniel,

also ich versteh die Aufgabe nicht.

Also ich habe eine Schar von Geraden mit der Gleichung:
[mm]f_k(x)=-k^2x+k^3[/mm]

So nun kann ich die Schnittpunkte mit den Koordinatenachsen bestimmen.
[mm]f_k(0)=k^3[/mm]
[mm]0=-k^2x+k^3 \Rightarrow x=k[/mm]

Damit auch den Flächeninhalt des Dreiecks.

Aber von was wird dieses Dreieck nun halbiert?

Mit freundlichen Grüßen,
Andi

Bezug
                        
Bezug
Lineare Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Sa 19.01.2008
Autor: Blaub33r3

Hallo !

Es entstehen unabhängig von k immer Dreiecke, die die selbe Eigenschaft besitzen wenn man sie teilt, halbieren sie sich zu 2 kleineren Dreiecken innerhalb des Ursprunglichen...am besten kannst du dir das zeichnerisch klar machen.... Versuch mal ein normales Dreieck in 2 kleiner gleichwertige zuteilen! ^^

Ich hab ja über den Flächeninhalt quasi bewiesen das 2 kleinere Dreiecke somit entstehen(wegen dem Flächeninhalt durch 2). Ergo halbiert sich das alte Dreieck!

Grüße Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]