www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare Gleichungssystem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Lineare Gleichungssystem
Lineare Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 So 18.10.2009
Autor: empty

Aufgabe 1
(1) Für a, b, c, el RR sei S(a, b, c) das lineare Gleichungssystem

2x1             = 0
ax1 - x2        = 0
bx1 + cx2 + 3x3 = 0

Weiter sei S' das lineare Gleichungssystem

x1   + x2  + 2x3 = 0
-2x1       - x3  = 0
x1   + 3x2 + 5x3 = 0

Zeigen Sie: Für keine Wahl von (a, b, c) sind S(a, b, c) und S' äquivalent.

Aufgabe 2
Bestimmen Sie die Lösungsmenge der folgenden linearen Gleichungssysteme:

(a)
2x1 - 2x2 + 3x3 + 4x4 = -1
-x1 + x2  + 2x3 + 5x4 = 4
          - x3  - 2x4 = -1
x1  - x2  + 2x3 + 3x4 = 0

(b)
2x1 - 2x2 + 2x3 + 4x4 = -1
-x1 + x2  + 2x3 + 5x4 = 2
          - x3  - 2x4 = 3
x1  - x2  + 2x3 + 3x4 = 0

Hi, ich studiere im erstem Semester Wirtschaftsmathe, jetzt haben wir ein Übungsblatt bekommen mit diesen Aufgaben. Leider steig ich da noch nicht wirklich durch und hoffe das ihr mir helfen könnt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 So 18.10.2009
Autor: steppenhahn

Hallo und [willkommenmr]!

Bei uns ist es üblich, eigene Lösungsansätze zu der Aufgabe mitzuliefern.

> (1) Für a, b, c, el RR sei S(a, b, c) das lineare
> Gleichungssystem
>  
> 2x1             = 0
>  ax1 - x2        = 0
>  bx1 + cx2 + 3x3 = 0
>  
> Weiter sei S' das lineare Gleichungssystem
>  
> x1   + x2  + 2x3 = 0
>  -2x1       - x3  = 0
>  x1   + 3x2 + 5x3 = 0
>  
> Zeigen Sie: Für keine Wahl von (a, b, c) sind S(a, b, c)
> und S' äquivalent.

Du sollst zeigen, dass egal wie du a,b und c wählst, die beiden Gleichungssysteme werden nie dieselben Lösungen haben. Dazu solltest du zunächst ausrechnen, welche Lösungen [mm] (x_{1},x_{2},x_{3}) [/mm] das Gleichungssystem S' hat. Ihr habt sicher Methoden kennen gelernt, wie man das machen kann.
Falls nicht, verweise ich dich auf []Gauß Algorithmus oder auf deinen Taschenrechner, wenn der sowas kann.
Du erhältst als Lösungsmenge [mm] $(\lambda,3*\lambda,-2*\lambda)$ [/mm] mit [mm] \lambda\in\IR, [/mm] d.h. unendlich viele Lösungen. Nun schau dir das Gleichungssystem S an. Durch die erste Gleichung wird der Wert von [mm] x_{1} [/mm] klar bestimmt, damit dann in der zweiten Gleichung auch der Wert von [mm] x_{2}, [/mm] und in der dritten Gleichung der von [mm] x_{3}. [/mm] Das Gleichungssystem S hat nur eine Lösung.
--> Wenn S' unendlich viele Lösungen hat, S unabhängig von (a,b,c) aber immer nur eine, können die S und S' für keine a,b,c äquivalent werden.


>  Bestimmen Sie die Lösungsmenge der folgenden linearen
> Gleichungssysteme:
>  
> (a)
> 2x1 - 2x2 + 3x3 + 4x4 = -1
>  -x1 + x2  + 2x3 + 5x4 = 4
>            - x3  - 2x4 = -1
>  x1  - x2  + 2x3 + 3x4 = 0
>  
> (b)
>  2x1 - 2x2 + 2x3 + 4x4 = -1
>  -x1 + x2  + 2x3 + 5x4 = 2
>            - x3  - 2x4 = 3
>  x1  - x2  + 2x3 + 3x4 = 0

Habt ihr Methoden zur Lösung solcher Linearen Gleichungssysteme (LGS) kennen gelernt? Wenn ja, was verstehst du nicht?

Grüße,
Stefan


Bezug
                
Bezug
Lineare Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 19.10.2009
Autor: empty

Hi, danke schonmal. Ich habe leider nur FOS gemacht weshalb ich jetzt doch einige Lücken habe (fehlende 13. Klasse usw).

Methoden haben wir schon kennen gelernt aber ich steig jetzt erst mit dem von dir gepostet Link etwas durch.

Was ich immer noch nicht weiß ist, was haben diese leeren Stellen in den Gleichungen zu bedeuten?

Würde ja gerne meinen Lösungsansatz posten, aber habe erst heute Abend Zeit das ab zu tippen.

Gruß Alex

Bezug
                        
Bezug
Lineare Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 19.10.2009
Autor: M.Rex

Hallo Alex und [willkommenmr]

> Hi, danke schonmal. Ich habe leider nur FOS gemacht weshalb
> ich jetzt doch einige Lücken habe (fehlende 13. Klasse
> usw).
>
> Methoden haben wir schon kennen gelernt aber ich steig
> jetzt erst mit dem von dir gepostet Link etwas durch.

Das ist doch schonmal nen Ansatz

>  
> Was ich immer noch nicht weiß ist, was haben diese leeren
> Stellen in den Gleichungen zu bedeuten?

In Gleichungssystemen ist es üblich, die Variablen zu sortieren, und wenn in einer Gleichung einer fehlt, diese wegzulassen.

Also
[mm] \vmat{2x_{1} = 0\\ax_{1} - x_{2} = 0\\x_{1} + cx_{2} + 3x_{3} = 0 } [/mm]
[mm] \gdw\vmat{2x_{1}+0x_{2}+0x_{3}=0\\ax_{1}-\green{1}x_{2}+0x_{3}=0\\\green{1}x_{1}+cx_{2}+3x_{3}=0} [/mm]



Die zugehörige Koeffizientenmatrix [mm] \mathcal{A} [/mm] dazu wäre:
[mm] \pmat{2&0&0\\a&-1&0\\1&c&3} [/mm]

Also wäre das LGS in der Schreibweise [mm] \mathcal{A}*\vec{x}=\vec{0} [/mm]
[mm] \pmat{2&0&0\\a&-1&0\\1&c&3}*\vektor{x_{1}\\x_{2}\\x_{3}}=\vektor{0\\0\\0} [/mm]

Oder in noch anderer Schreibweise.

[mm] \pmat{2&0&0&|&0\\a&-1&0&|&0\\1&c&3&|&0} [/mm]

Eine der Schreibweisen und der zugehörige Lösungsweg sollte dir aus der Schule bekannt vorkommen.


>
> Würde ja gerne meinen Lösungsansatz posten, aber habe
> erst heute Abend Zeit das ab zu tippen.
>  
> Gruß Alex

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]