Lineare Gleichungssyteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:12 Di 08.06.2010 | Autor: | dannyf86 |
Aufgabe | Seien K ein Körper, m, n, s [mm] \in [/mm] N, A [mm] \in K^{n,m} [/mm] und B [mm] \in K^{n,s}. [/mm] Für i = 1, . . . , s bezeichne [mm] b_i [/mm] die i-te Spalte von B. Zeigen Sie, dass das lineare Gleichungssystem AX = B genau dann mindestens eine Lösung
X [mm] \in K^{m,s} [/mm] hat, wenn
Rang(A) = Rang([A, [mm] b_1]) [/mm] = Rang([A, [mm] b_2]) [/mm] = . . . = Rang([A, [mm] b_s]). [/mm] |
Hallo,
also irgendwie hab ich Probleme mit der Aufgaben. Ich habe schonmal bewiesen, dass das lineare Gleichungssystem AX = B genau dann mindestens eine Lösung hat wenn Rang(A) = Rang([A, b]) gilt. Aber das ist ja nicht das gleiche wie in der Aufgabe. kann man diesen beweis vielleicht in den anderen mit einbauen? oder gilt das vielleicht garnicht? Ich wäre über eine Antwort sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:19 Di 08.06.2010 | Autor: | fred97 |
> Seien K ein Körper, m, n, s [mm]\in[/mm] N, A [mm]\in K^{n,m}[/mm] und B [mm]\in K^{n,s}.[/mm]
> Für i = 1, . . . , s bezeichne [mm]b_i[/mm] die i-te Spalte von B.
> Zeigen Sie, dass das lineare Gleichungssystem AX = B genau
> dann mindestens eine Lösung
> X [mm]\in K^{m,s}[/mm] hat, wenn
> Rang(A) = Rang([A, [mm]b_1])[/mm] = Rang([A, [mm]b_2])[/mm] = . . . =
> Rang([A, [mm]b_s]).[/mm]
> Hallo,
>
> also irgendwie hab ich Probleme mit der Aufgaben. Ich habe
> schonmal bewiesen, dass das lineare Gleichungssystem AX = B
> genau dann mindestens eine Lösung hat wenn Rang(A) =
> Rang([A, b]) gilt.
Du meinst sicher: (*) Ax=b ist lösbar [mm] \gdw [/mm] Rang(A) = Rang([A, b])
> Aber das ist ja nicht das gleiche wie in
> der Aufgabe. kann man diesen beweis vielleicht in den
> anderen mit einbauen? oder gilt das vielleicht garnicht?
> Ich wäre über eine Antwort sehr dankbar.
Überlege Dir: AX=B ist lösbar [mm] \gdw Ax=b_i [/mm] ist lösbar für i=1, ..., s
Wenn Du jetzt noch (*) einbringst, bist Du fast fertig
FRED
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:46 Di 08.06.2010 | Autor: | dannyf86 |
mmh ok ich versuchs mal danke
|
|
|
|