www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Hülle, Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Hülle, Basis
Lineare Hülle, Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Hülle, Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Do 31.05.2007
Autor: Syladriel

Aufgabe
Es seien die Vektoren u = [mm] \vektor{2 \\ 1 \\ 0}, [/mm] v = [mm] \vektor{1\\-1\\2}, w=\vektor{0\\3\\-4} [/mm] gegeben.
a) Ist das Tripel (u,v,w) linear unabhängig in [mm] \IR^3? [/mm] Welche Teilfamilien sind unabhängig?
b) Man bestimme die Lineare Hülle von [mm] \{u,v,w\}. [/mm]
c) Man finde z, so dass (u,v,z) linear unabhängig ist. Ist dies eine Basis von [mm] \IR^3? [/mm]

Erst einmal meine eigenen Lösungsansätze:
[mm] \lambda\cdot\vektor{2 \\ 1 \\ 0}+\mu\cdot\vektor{1\\-1\\2}+\nu\cdot\vektor{0\\3\\-4}=\vektor{0\\0\\0} [/mm] zur Bestimmung, ob die drei Vektoren linear unabhängig sind.

[mm] 2\cdot\lambda+\mu=0 [/mm]
[mm] \lambda-\mu+3\cdot\nu=0 [/mm]
[mm] 2\cdot\mu-4\cdot\nu=0 [/mm]

vertauschen der ersten und zweiten Zeile.
[mm] \lambda-\mu+3\cdot\nu=0 [/mm]
[mm] 2\cdot\lambda+\mu=0 [/mm]
[mm] 2\cdot\mu-4\cdot\nu=0 [/mm]

erste Zeile [mm] \cdot(-2) [/mm] + zweite Zeile
[mm] \lambda-\mu+3\cdot\nu=0 [/mm]
[mm] 3\cdot\mu+6\cdot\nu=0 [/mm]
[mm] 2\cdot\mu-4\cdot\nu=0 [/mm]

zweite Zeile [mm] \cdot-\bruch{2}{3} [/mm] + dritte Zeile
[mm] \lambda-\mu+3\cdot\nu=0 [/mm]
[mm] 3\cdot\mu+6\cdot\nu=0 [/mm]
[mm] -8\cdot\nu=0 [/mm]

aus der letzten Zeile folgt: [mm] \nu [/mm] = 0
durch Rückwärtssubstitution folgt auch noch [mm] \mu [/mm] = 0 und [mm] \lambda [/mm] = 0
daraus folgt, das Tripel(u,v,w) ist linear unabhängig.

Wenn das jemand kontrollieren könnte, wäre ich froh.
Nun meine Frage(n):
Was sind denn Teilfamilien und was wäre nun eine Teilfamilie?
Wie bestimme ich die lineare Hülle?
Aus c) schließe ich, dass die Vektoren eigentlich linear abhängig sind, sonst müsste ich doch keinen Vektor z finden, oder liege ich da falsch?
Ich weiß, dass eine Basis des [mm] \IR^3 [/mm] die Vektoren [mm] \vektor{1\\0\\0},\vektor{0\\1\\0} [/mm] und [mm] \vektor{0\\0\\1} [/mm] sind. Wie stelle ich fest, ob 3 Vektoren eine Basis des [mm] \IR^3 [/mm] sind?

Hoffe mir kann jemand meine Fragen beantworten.
Liebe Grüße.

Ich habe dies Frage in keinem anderen Forum gestellt

        
Bezug
Lineare Hülle, Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Do 31.05.2007
Autor: angela.h.b.


> Es seien die Vektoren u = [mm]\vektor{2 \\ 1 \\ 0},[/mm] v =
> [mm]\vektor{1\\-1\\2}, w=\vektor{0\\3\\-4}[/mm] gegeben.
>  a) Ist das Tripel (u,v,w) linear unabhängig in [mm]\IR^3?[/mm]
> Welche Teilfamilien sind unabhängig?
>  b) Man bestimme die Lineare Hülle von [mm]\{u,v,w\}.[/mm]
>  c) Man finde z, so dass (u,v,z) linear unabhängig ist. Ist
> dies eine Basis von [mm]\IR^3?[/mm]


Hallo,

Du hast Dich bei der Überprüfung der linearn Unabhängigkeit an irgendeiner Stelle verrechnet. Die drei Vektoren sind nicht linear unabhängig.


> Wenn das jemand kontrollieren könnte, wäre ich froh.
>  Nun meine Frage(n):
>  Was sind denn Teilfamilien und was wäre nun eine
> Teilfamilie?

Du hast nun drei linear abhängige Vektoren, und hieraus sollst Du eine möglichst große Menge von linear unabhängigen Vektoren "abschöpfen".
Familie: Eine Familie unterscheidet sich von einer Menge dadurch, daß die Reihenfolge eine Rolle spielt.
Basen gibt man doch oft so an: [mm] B=(b_1,...,b_n). [/mm] Die Reihenfolge ist fest, was natürlich bei der Angabe von Koordinaten bzgl. dieser Basis notwendig ist.

>  Wie bestimme ich die lineare Hülle?

Die lineare Hülle ist die Menge sämtlicher Linearkombinationen, die Du aus einer vorgegebenen Menge/Familie bilden kannst.

>  Aus c) schließe ich, dass die Vektoren eigentlich linear
> abhängig sind, sonst müsste ich doch keinen Vektor z
> finden, oder liege ich da falsch?

Da wie oben erwähnt die Vektoren abhängig sind, wirst Du doch einen finden.


> sind. Wie stelle ich fest, ob 3 Vektoren eine Basis des
> [mm]\IR^3[/mm] sind?

Immer, wenn Du drei linear unabhängige Vektoren aus dem [mm] \IR^3 [/mm] in der Hand hast, bilden diese eine Basis, denn der [mm] \IR^3 [/mm] hat die Dimension 3.

Falls Ihr allerdings den Satz, daß alle Basen gleichmächtig sind, noch nicht hattet, mußt Du neben der linearen Unabhängigkeit prüfen, ob Du damit den [mm] \IR^3 [/mm] erzeugen, also jedes Element des [mm] \IR^3 [/mm] als Linearkombination der fraglichen Vektoren darstellen, kannst

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]