www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesLineare Näherung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Lineare Näherung
Lineare Näherung < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Näherung: Spezielle Relativitätstheorie
Status: (Frage) beantwortet Status 
Datum: 21:23 Mi 07.05.2008
Autor: Naeherer

Aufgabe
Leite eine lineare Näherung zu Funktion   f(v) = [mm] \wurzel{1-v^2/c^2} [/mm] her.

Hallo muss für eine Physikklausur das da oben können und wir haben das nicht richtig im Unterricht gemacht. Habe auch schon die andere Diskussion zu dem Thema gesehen, das hilft mir aber nicht wirklich.
Kann mir jemand sagen, wie man das herleitet?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Näherung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 07.05.2008
Autor: benevonmattheis

Hallo,

ich weiß nicht, in wie weit eure Mathematikkenntnisse sind, allerdings lässt sich in eurer Formelsammlung bestimmt folgende Beziehung nachschlagen:

für |x|<<1 gilt: [mm] (1+x)^{n} \approx [/mm] 1+nx

Überlege dir was x in deinem Fall ist und ob die Vorraussetzungen erfüllt sind, also ob |x|<<1 und warum. Außerdem musst du natürlich wissen was dein n bei dir ist.

Tschüss,
Bene



Bezug
                
Bezug
Lineare Näherung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:51 Mi 07.05.2008
Autor: Naeherer

Ja das klappt. Damit kommt man auf die gleiche Näherung wie sie auch im Buch zu finden ist(das hatte ich unterschlagen, tut mir leid). Aber ich verstehe immer noch nicht, wie man darauf gekommen ist. Das geht doch irgendwie über die Ableitung, oder?

Bezug
                        
Bezug
Lineare Näherung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mi 07.05.2008
Autor: benevonmattheis

Hallo,
nun, wenn du mich fragst würde ich das über eine Taylor-Entwicklung beweisen. Da ich aber davon ausgehen muss, dass du das nicht kennst werde ich mal folgende "Visualisierung" skizzieren:
Angenommen |x|<<1.
Das heißt das Ergebnis von [mm] (1+x)^{n} [/mm] liegt nahe bei dem Ergebnis für x=0, also bei [mm] (1+0)^{n}=1. [/mm] Außerdem reicht es (weil es eine Näherung sein soll) dann, den Graphen der Funktion in der Nähe von x=0 als Gerade anzusehen.
Diese Gerade soll die Steigung haben, wie die Ableitung der Funktion an der Stelle x=0: [mm] [(1+x)^{n}]'=n*(1+x)^{n-1} [/mm] was gleich n ist für x=0.
Also erhalten wir für die Näherung die Formel 1+n*x. 1 ist der y-Achsenabschnitt der ursprünglichen Funktion bei x=0 und n die Steigung der (durch Näherung angenommenen) Geraden, die gleich der Steigung der Funktion für x=0 sein soll. n muss natürlich mit x multipliziert werden, da die Gerade ja eine Funktion von x sein soll.
Alles klar?
Bene

Bezug
                                
Bezug
Lineare Näherung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:33 Do 08.05.2008
Autor: Naeherer

Ja danke, habs verstanden. Hab irgendwie immer versucht, dass direkt mit der Funktion zu machen und dann kam wegen der inneren Ableitung von der Klammer was total anderes raus, als die Näherung im Buch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]