www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLineare Unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Beweis
Status: (Frage) beantwortet Status 
Datum: 11:24 Di 28.12.2004
Autor: Flippper368

Hi,
ich versuche einen seltsamen (finde ich zumindest) Beweis zu führen.

Die Behauptung: Lässt man von 4 lin. unabh. Vektoren einen weg, so sind die restlichen Vektoren auch lin.unabh.

Ich hab keine Ahnung wie ich das beweisen soll, dass das stimmt ist doch logisch ;-)
Lg
Flipper

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Di 28.12.2004
Autor: Hanno

Hallo Flipper!

Die Behauptung kannst du bequem und leicht über einen Widerspruchsbeweis verifizieren:
Sei nämlich [mm] $B:=\{v_1,v_2,v_3,v_4\}$ [/mm] eine linear unabhängige Menge von Vektoren. Nach Definition der linearen Unabhängigkeit bedeutet das, dass es nur die triviale Nullvektorkombination gibt, d.h. also, dass aus [mm] $a_1\cdot v_1+a_2\cdot v_2+a_3\cdot v_3+a_4\cdot v_4=0$ [/mm] (mit Skalaren [mm] $a_1,a_2,a_3,a_4$) [/mm] sofort [mm] $a_1=a_2=a_3=a_4=0$ [/mm] folgt. So, betrachten wir jetzt mal die Mengen [mm] $B':=B\setminus\{v_4\}$ [/mm] (es ist irrelevant, welchen Vektor wir weglassen, da wir sie alle gleich behandeln - wir handeln also "ohne Beschränkung der Allgemeinheit" (o.B.d.A.)). Nehmen wir an, $B'$ wäre linear abhängig, dann gäbe es also eine nichttriviale Linearkombination des Nullvektors, es ließen sich also Koeffizienten [mm] $a_1,a_2,a_3$ [/mm] finden, von denen wenigstens einer ungleich Null ist, sodass [mm] $a_1\cdot v_1+a_2\cdot v_2+a_3\cdot v_3=0$ [/mm] gilt. Dies allerdings ist ein Widerspruch, da dann auch [mm] $a_1\cdot v_1+a_2\cdot v_2+a_3\cdot v_3+0\cdot v_4=0$ [/mm] eine nichttriviale Linearkombination des Nullvektors wäre und auch $B$ entgegen der Definition linear abhängig wäre. Damit muss $B'$ linear abhängig sein.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]