www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Di 30.11.2010
Autor: sqrt25

Aufgabe
Zeige: Die Funktionen f, g, h [mm] \in \IR [/mm] f(x) = 1-cos(x)-sin(x), g(x) = 1-cos(4x) und
h(x) = sin(3x)
sind in [mm] \IR [/mm] linear unabhängig.

Wie diese Aufgabe zu lösen ist, ist mir prinzipiell klar.
Ich wähle:
a*f(x)+b*g(x)+c*h(x)=0 mit a,b,c [mm] \in \IR [/mm] (I)

Dann wähle ich beliebig drei verschiedene x in [mm] \IR, [/mm] setze diese in (I) ein, erhalte dann drei Gleichungen mit drei Unbekannten, sodass ich a,b,c bestimmen kann. Sofern die Funktionen linear unabhängig sind, gilt dann: a=b=c=0.

Ich habe nun beliebig gewählt:
"Beliebig" heißt für mich z.B. auch x gleich null. Dann verschwindet die gesamte Gleichung (I). In diesem Fall könnte ich also meine a,b,c doch beliebig verschieden von null wählen und die Bedingung (I) ist trotzdem erfüllt.

Anders formuliert, ich wähle [mm] x_1=\Pi/2, x_2=\Pi, x_3=0 [/mm] und erhalte zwei Gleichunge mit drei Unbekannten, da für [mm] x_3 [/mm]  die letzte Gleichung verschwindet. Demnach wären dann die Funktionen linear abhängig.

Stimmt meine Folgerung?


        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Di 30.11.2010
Autor: angela.h.b.


> Zeige: Die Funktionen f, g, h [mm]\in \IR[/mm] f(x) =
> 1-cos(x)-sin(x), g(x) = 1-cos(4x) und
>   h(x) = sin(3x)
>  sind in [mm]\IR[/mm] linear unabhängig.
>  Wie diese Aufgabe zu lösen ist, ist mir prinzipiell klar.
> Ich wähle:
>  a*f(x)+b*g(x)+c*h(x)=0 mit a,b,c [mm]\in \IR[/mm] (I)
>  
> Dann wähle ich beliebig drei verschiedene x in [mm]\IR,[/mm] setze
> diese in (I) ein, erhalte dann drei Gleichungen mit drei
> Unbekannten, sodass ich a,b,c bestimmen kann. Sofern die
> Funktionen linear unabhängig sind, gilt dann: a=b=c=0.
>  
> Ich habe nun beliebig gewählt:
> "Beliebig" heißt für mich z.B. auch x gleich null. Dann
> verschwindet die gesamte Gleichung (I). In diesem Fall
> könnte ich also meine a,b,c doch beliebig verschieden von
> null wählen und die Bedingung (I) ist trotzdem erfüllt.
>  
> Anders formuliert, ich wähle [mm]x_1=\Pi/2, x_2=\Pi, x_3=0[/mm] und
> erhalte zwei Gleichunge mit drei Unbekannten, da für [mm]x_3[/mm]  
> die letzte Gleichung verschwindet. Demnach wären dann die
> Funktionen linear abhängig.
>
> Stimmt meine Folgerung?

Hallo,

nein, die Folgerung stimmt nicht.

Die Frage ist ja, ob aus af+bg+ch=Nullfunktion folgt, daß a=b=c=0.

Was bedeutet denn af+bg+ch=Nullfunktion? Es handelt sich um die Gleichheit von Funktionen.

Die rechte und die linke Seite sind gleich, wenn sie an jeder Stelle des Definitionsbereiches übereinstimmen,

wenn also gilt:

af(x)+bg(x)+ch(x)=0  für alle [mm] x\in \IR [/mm]

Wenn Du nun drei verschiedene [mm] x_1, x_2, x_3 [/mm] findest, für welche das GS

[mm] af(x_1)+bg(x_1)+ch(x_1)=0 [/mm]
[mm] af(x_2)+bg(x_2)+ch(x_2)=0 [/mm]
[mm] af(x_3)+bg(x_3)+ch(x_3)=0 [/mm]

nur die Lösung a=b=c=0 hat, dann sind die drei Funktionen linear unabhängig, denn die Tatsache, daß u.a. (neben vielen anderen) diese drei Gleichungen gleichzeitig gelten müssen, macht, daß es keine anderen Lösungen geben kann.

Wenn Du nun drei Wertee [mm] x_i [/mm] findest, für welche das entsprechende GS eine nichttriviale Lösung hat, sind wir so schlau wie zuvor: wir wissen ja nicht, wozu uns die vielen anderen Gleichungen zwingen - es sei denn, man kann beweisen, daß af(x)+bg(x)+ch(x)=0 wirklich  für alle [mm] x\in \IR [/mm] gilt.

Du bist bisher so schlau wie zuvor und könntest versuchen, "bessere" Stellen des Definitionsbereiches zu finden.

Ein anderer Lösungsweg kann über die Betrachtung der Ableitungen von af+bg+ch=Nullfunktion führen.

Gruß v. Angela




>  


Bezug
                
Bezug
Lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Di 30.11.2010
Autor: sqrt25

Danke, ich hab's verstanden ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]