www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteLineare Unabhängigkeit bestimm
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Lineare Unabhängigkeit bestimm
Lineare Unabhängigkeit bestimm < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit bestimm: Weiteres vorgehen
Status: (Frage) beantwortet Status 
Datum: 17:50 Mi 18.02.2009
Autor: trouff

Aufgabe
Seien die Vektoren [mm] \vec{a}, \vec{b}, [/mm] vec{c}  aus [mm] \IR^3 [/mm] linear unabhängig. Untersuchen Sie, ob dann auch die Vektoren [mm] \{ \vec {a}+ 2 \vec {b}; \vec {a} + \vec {b} +\vec {c}, \vec {a} -\vec {b} - \vec {c} \} [/mm] auch linear unabhängig sind

Hallo Mathefreunde!

So meine idee dazu ist es zwei gleichungen aufzustellen.
Eine gleichung die aus der linearen unabhängikeit der einzelnen vektoren besteht und eine für die lineare unabhängigkeit der anderen gleichung.
Jetzt habe ich mir gedacht kann man die einzelnen vektoren aus der einen gleichung ausklammern.
Das wird dann zu:
[mm] (\lambda_{4} [/mm] + [mm] \lambda_{5} [/mm] + [mm] \lambda_{5}) [/mm] * [mm] \vec{a} [/mm] + (2 * [mm] \lambda_{4} [/mm] + [mm] \lambda_{5} [/mm] - [mm] \lambda_{6})* \vec{b} [/mm] + ( [mm] \lambda_{5} [/mm] + [mm] \lambda_{6}) [/mm] * [mm] \vec{c} [/mm]

Die andere Gleichung kann man ja auch zu einem Vektor auflösen.
Das Problem ist aber [mm] \lambda [/mm] könnte null sein und zum auflösen nach einem vektor muss ich durch [mm] \lambda [/mm] teilen.

Die andere Sache ist, dass ich nicht weiß wie ich jetzt weiter vorgehen kann. Ich ´kann natürlich noch die eine in die andere Gleichung einsetzen, aber dann habe ich viele unbekannte und nur 2 Gleichungen.

Wäre für eoinen Tip dankbar.

Mfg trouff


P.S.: Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Lineare Unabhängigkeit bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Mi 18.02.2009
Autor: angela.h.b.


> Seien die Vektoren [mm]\vec{a}, \vec{b},[/mm] vec{c}  aus [mm]\IR^3[/mm]
> linear unabhängig. Untersuchen Sie, ob dann auch die
> Vektoren [mm]\{ \vec {a}+ 2 \vec {b}; \vec {a} + \vec {b} +\vec {c}, \vec {a} -\vec {b} - \vec {c} \}[/mm]
> auch linear unabhängig sind
>  
> Hallo Mathefreunde!
>  
> So meine idee dazu ist es zwei gleichungen aufzustellen.
>  Eine gleichung die aus der linearen unabhängikeit der
> einzelnen vektoren besteht und eine für die lineare
> unabhängigkeit der anderen gleichung.
>  Jetzt habe ich mir gedacht kann man die einzelnen vektoren
> aus der einen gleichung ausklammern.

Hallo,

Dein Gedanke ist gut.

Ist Dir klar, was lineare Unabhängigkeit bedeutet? Dies: wenn eine Linearkombination von vec{a}, [mm] \vec{b},[/mm] [/mm] vec{c}  den Nullvektor ergibt, dann müssen alle Faktorne vor den Vektoren =0 sein.


>  Das wird dann zu:
>  [mm] \red{\vec{0}}=[/mm]  [mm](\lambda_{4}[/mm] + [mm]\lambda_{5}[/mm] + [mm]\lambda_{5})[/mm] * [mm]\vec{a}[/mm] + (2 *
> [mm]\lambda_{4}[/mm] + [mm]\lambda_{5}[/mm] - [mm]\lambda_{6})* \vec{b}[/mm] + (
> [mm]\lambda_{5}[/mm] [mm] \red{-}[/mm]  [mm]\lambda_{6})[/mm] * [mm]\vec{c}[/mm]

Hieraus folgt nun, daß die Klammern jeweils =0 sind, denn vec{a}, [mm] \vec{b},[/mm] [/mm] vec{c} sind als unabhängig vorausgesetzt.

Das daraus entstehende homogene lineare Gleichungssystem ist zu lösen. Erhält man, daß alle [mm] \lambda [/mm] =0 sind so sind die Vektoren

[mm] \vec{a}+ [/mm] 2 [mm] \vec{b}; \vec{a} [/mm] + [mm] \vec{b} +\vec{c}, \vec{a} -\vec{b} [/mm] - [mm] \vec{c} [/mm] linear unabhängig.

Gruß v. Angela

>
> Die andere Gleichung kann man ja auch zu einem Vektor
> auflösen.
> Das Problem ist aber [mm]\lambda[/mm] könnte null sein und zum
> auflösen nach einem vektor muss ich durch [mm]\lambda[/mm] teilen.
>  
> Die andere Sache ist, dass ich nicht weiß wie ich jetzt
> weiter vorgehen kann. Ich ´kann natürlich noch die eine in
> die andere Gleichung einsetzen, aber dann habe ich viele
> unbekannte und nur 2 Gleichungen.
>  
> Wäre für eoinen Tip dankbar.
>  
> Mfg trouff
>  
>
> P.S.: Ich habe diese Frage in keinem anderen Forum
> gestellt.


Bezug
                
Bezug
Lineare Unabhängigkeit bestimm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 18.02.2009
Autor: trouff

Danke schonmal

Stehe leider immer noch ein bisschen auf dem schlauch.
Die Gleichungen die ich zu lösen habe sind diese richtig:

0 = [mm] \lambda_{4} [/mm] + [mm] \lambda_{5} [/mm] + [mm] \lambda_{5} [/mm]
0 = 2 * [mm] \lambda_{4} [/mm]  +  [mm] \lambda_{5} [/mm]  -  [mm] \lambda_{6} [/mm]
0 = [mm] \lambda_{5} [/mm] - [mm] \lambda_{6} [/mm]

Aber kann es nicht so auskommen, dass die Vektoren sich Gegenseitig auslöschen.

mfg trouff


Bezug
                        
Bezug
Lineare Unabhängigkeit bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 18.02.2009
Autor: MathePower

Hallo trouff,

> Danke schonmal
>  
> Stehe leider immer noch ein bisschen auf dem schlauch.
>  Die Gleichungen die ich zu lösen habe sind diese richtig:
>  
> 0 = [mm]\lambda_{4}[/mm] + [mm]\lambda_{5}[/mm] + [mm]\lambda_{5}[/mm]


Hier muß es heißen:

[mm]0 = \lambda_{4} + \lambda_{5}+ \lambda_{\red{6}}[/mm]



> 0 = 2 * [mm]\lambda_{4}[/mm]  +  [mm]\lambda_{5}[/mm]  -  [mm]\lambda_{6}[/mm]
>  0 = [mm]\lambda_{5}[/mm] - [mm]\lambda_{6}[/mm]
>  
> Aber kann es nicht so auskommen, dass die Vektoren sich
> Gegenseitig auslöschen.
>  
> mfg trouff
>  


Gruß
MathePower

Bezug
        
Bezug
Lineare Unabhängigkeit bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mi 18.02.2009
Autor: Al-Chwarizmi


> Seien die Vektoren [mm]\vec{a}, \vec{b},[/mm] [mm] \vec{c} [/mm]  aus [mm]\IR^3[/mm]
> linear unabhängig. Untersuchen Sie, ob dann auch die
> Vektoren [mm]\{ \vec {a}+ 2 \vec {b}; \vec {a} + \vec {b} +\vec {c}, \vec {a} -\vec {b} - \vec {c} \}[/mm]
> auch linear unabhängig sind



>  [mm](\lambda_{4}[/mm] + [mm]\lambda_{5}[/mm] + [mm]\lambda_{5})[/mm] * [mm]\vec{a}[/mm] + (2 *
> [mm]\lambda_{4}[/mm] + [mm]\lambda_{5}[/mm] - [mm]\lambda_{6})* \vec{b}[/mm] + (
> [mm]\lambda_{5}[/mm] + [mm]\lambda_{6})[/mm] * [mm]\vec{c}[/mm]


hallo trouff


Anstatt dich mit den Lambdas herumzuschlagen,
könntest du auch die analoge Frage beantworten:

Sind die Vektoren

    [mm] $\vec{u}=\vektor{1\\2\\0}\ ,\quad\vec{v}=\vektor{1\\1\\1}\ ,\quad\vec{w}=\vektor{1\\-1\\-1}$ [/mm]

linear unabhängig ?


Gruß     Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]