www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenLineare partielle DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Lineare partielle DGL
Lineare partielle DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare partielle DGL: Verständnis
Status: (Frage) beantwortet Status 
Datum: 21:16 Fr 09.03.2012
Autor: Mathe_001

Aufgabe
[mm] v_{t}=\pmat{ 2 & -1 \\ 0 & 1 } v_{x} [/mm]

Anfangsbedingung: v(x,0)= [mm] \vektor{x \\ cos(x)} [/mm]

Lösen Sie die partielle Dgl mittels Transformation der Matrix in Diagonalgestalt.


hallo zusammen,

[mm] \lambda_{1}=2 [/mm] mit eigenvektor [mm] u_{1}=\vektor{1 \\ 0} [/mm]
[mm] \lambda_{2}=1 [/mm] mit eigenvektor [mm] u_{2}=\vektor{1 \\ 1} [/mm]

[mm] T=\pmat{ 1 & 1 \\ 0 & 1 } [/mm] und [mm] T^{-1}=\pmat{ 1 & -1 \\ 0 & 1 } [/mm]

nun benutze ich die formel:
[mm] w_{t}=Bw_{x}=\pmat{ 2 & 0 \\ 0 & 1 }w_{x}, [/mm] wobei B=diag(eigenwerte) bzw.  [mm] T^{-1}*A*T [/mm] = B

daraus bekommt man 2 gleichungen:

[mm] w_{1,t}=2w_{1,x} [/mm]
[mm] w_{2,t}=w_{2,x} [/mm]

nun kann ich den folgenden schritt nicht erklären:
es wird gesagt laut der musterlösung:
[mm] w_{1}(x,t)= h_{1}(-2t-x) [/mm]
[mm] w_{2}(x,t)= h_{2}(-t-x) [/mm]

nur kann ich das nicht anhand des skripts nachvollziehen.

kann einer mir evtl da eine formel geben bzw. erklären wie man darauf kommt

Viele Grüße

Mathe_001







        
Bezug
Lineare partielle DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Fr 09.03.2012
Autor: MathePower

Hallo Mathe_001,

> [mm]v_{t}=\pmat{ 2 & -1 \\ 0 & 1 } v_{x}[/mm]
>
> Anfangsbedingung: v(x,0)= [mm]\vektor{x \\ cos(x)}[/mm]
>  
> Lösen Sie die partielle Dgl mittels Transformation der
> Matrix in Diagonalgestalt.
>  
> hallo zusammen,
>  
> [mm]\lambda_{1}=2[/mm] mit eigenvektor [mm]u_{1}=\vektor{1 \\ 0}[/mm]
>  
> [mm]\lambda_{2}=1[/mm] mit eigenvektor [mm]u_{2}=\vektor{1 \\ 1}[/mm]
>  
> [mm]T=\pmat{ 1 & 1 \\ 0 & 1 }[/mm] und [mm]T^{-1}=\pmat{ 1 & -1 \\ 0 & 1 }[/mm]
>  
> nun benutze ich die formel:
>  [mm]w_{t}=Bw_{x}=\pmat{ 2 & 0 \\ 0 & 1 }w_{x},[/mm] wobei
> B=diag(eigenwerte) bzw.  [mm]T^{-1}*A*T[/mm] = B
>  
> daraus bekommt man 2 gleichungen:
>  
> [mm]w_{1,t}=2w_{1,x}[/mm]
>  [mm]w_{2,t}=w_{2,x}[/mm]
>  
> nun kann ich den folgenden schritt nicht erklären:
>  es wird gesagt laut der musterlösung:
>  [mm]w_{1}(x,t)= h_{1}(-2t-x)[/mm]
>  [mm]w_{2}(x,t)= h_{2}(-t-x)[/mm]
>  
> nur kann ich das nicht anhand des skripts nachvollziehen.
>  
> kann einer mir evtl da eine formel geben bzw. erklären wie
> man darauf kommt
>  


Hier wurde eine lineare Transformation angesetzt:

[mm]w_{1}(x,t)= h_{1}(at+bx)[/mm]

[mm]w_{2}(x,t)= h_{2}(ct+dx)[/mm]

Zur Ermittlung der Werte a,b,c,d wurde dies in die DGL

[mm]w_{t}=\pmat{ 2 & 0 \\ 0 & 1 }w_{x}[/mm]

eingesetzt.


>
> Viele Grüße
>  
> Mathe_001
>  


Gruss
MathePower

Bezug
                
Bezug
Lineare partielle DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Fr 09.03.2012
Autor: Mathe_001

hallo,

somit komme ich auf

a=2b und c=d

kann ich also b und d bzw a und c beliebig wählen?

wäre dies der fall kommen bei mir als lösung verschiedene ergebnisse raus ... :(

ich hab es zwar mit der formel für inhomogene transportgleichungen umgangen, aber möchte es trotzdem verstehen :)

gruß

Mathe_001



Bezug
                        
Bezug
Lineare partielle DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Sa 10.03.2012
Autor: MathePower

Hallo Mathe_001,

> hallo,
>  
> somit komme ich auf
>  
> a=2b und c=d
>  
> kann ich also b und d bzw a und c beliebig wählen?
>  


Es ergibt sich doch jetzt:

[mm]w_{1}}\left(x,t\right)=h_{1}\left(2b*t+b*x\right)=h_{1}\left(2t+x\right)[/mm]

[mm]w_{2}}\left(x,t\right)=h_{2}\left(d*t+d*x\right)=h_{2}\left(t+x\right)[/mm]


> wäre dies der fall kommen bei mir als lösung verschiedene
> ergebnisse raus ... :(
>  
> ich hab es zwar mit der formel für inhomogene
> transportgleichungen umgangen, aber möchte es trotzdem
> verstehen :)
>  
> gruß
>  
> Mathe_001
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]