Lineares Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $ m > n $ natürliche Zahlen. Wähle reelle Zahlen [mm] a_{ij} [/mm] für alle $ 1 [mm] \le [/mm] i [mm] \le [/mm] m $ und alle $ 1 [mm] \le [/mm] j [mm] \le [/mm] n $. Zeige, dass das folgende lineare Gleichungssystem unendlich viele Lösungen [mm] (c_1, \cdots, c_m) [/mm] hat:
$ [mm] a_{11}c_1 [/mm] + [mm] \cdots [/mm] + [mm] a_{1m}c_m [/mm] = 0 $
[mm] \vdots
[/mm]
$ [mm] a_{n1}c_1 [/mm] + [mm] \cdots [/mm] + [mm] a_{nm}c_m [/mm] = 0 $
[Hinweis. Wenn $ [mm] a_{11} [/mm] = [mm] \cdots [/mm] = 0 $, wähle [mm] c_1 [/mm] willkürlich und $ [mm] c_2 [/mm] = [mm] \cdots [/mm] = [mm] c_m [/mm] = 0 $. Wir dürfen also annehmen, dass [mm] a_{i1} \not= [/mm] 0 für bestimmte $ i $ und indem man eventuell die Zeilen tauscht, dürfen wir außerdem annehmen, dass [mm] a_{11} \not= [/mm] 0. Löse dan [mm] c_1 [/mm] aus dem ersten Vergleich und benutze das Ergebnis für die restlichen Vergleiche.] |
Hallo allesamt,
was der Hinweis bedeutet, ist mir nicht ganz klar, darum versuch ich einfach mal mein Glück, ohne besonders darauf einzugehen.
Wenn man die erste Zeile des LGS mit [mm] \bruch{1}{a_{11}} [/mm] multipliziert und danach die neue erste Zeile von allen anderen subtrahiert, wobei man die erste Zeile mit [mm] a_{n1} [/mm] multipliziert, fallen alle Terme mit [mm] c_1 [/mm] in allen Zeilen außer der ersten weg. Man kann jetzt das gleiche Verfahren anwenden auf die zweite Zeile, um nur noch ein [mm] c_2 [/mm] zu erhalten. Weil ja $ m > n $, d.h. es gibt mehr Variablen als Gleichungen, erhält man nach vielen Schritten mindestens eine Zeile mit $ 0=0 $. Das bedeutet, dass das Gleichungssystem unendlich viele Lösungen haben muss, da man immer Variablen frei wählen kann.
Ist das so gültig und logisch?
Danke für jede Hilfe :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:00 Fr 19.09.2014 | Autor: | leduart |
Hallo
genau um mit [mm] 1/a_{11} [/mm] zu multiplizieren, brazcgst du den Hinweis, falls [mm] a_{11}= [/mm] 0 kannst du das ja nicht.
sonst kannst du si vorgehen.
Gruß leduart
|
|
|
|