www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineares Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Lineares Gleichungssystem
Lineares Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem: Mehr Spalten als Zeilen
Status: (Frage) beantwortet Status 
Datum: 19:39 Do 21.10.2010
Autor: bobbert

Aufgabe
2. Bestimmen Sie alle L ösungen des folgenden linearen Gleichungssystems:

4x1 + 3x2 − 7x3 + 11x4 − 6x6 = 0
8x1 + 8x2 − 5x3 + 12x4 − 2x5 + 3x6 = 0
4x1 + 5x2 + 2x3 + x4 − 2x5 + 9x6 = 0
12x1 + 13x2 − 3x3 + 13x4 − 4x5 + 16x6 = 0

Wenn dieses LGS mehr Spalten als Zeilen besitzt hat es dann überhaupt Schnittpunkte bzw. ist es überhaupt lösbar?

Wollte das Gauß-Jordan Elimination anwenden nur konnte ich die Dreiecksform nicth aufstellen. Also dachte ich mir nehme ich noch 2 Zeilen mit jeweils 0 Koeffizienten dazu:

4       3         7     11        0       6    0
8       8         5     12        2      3    0
4       5         2       0       2       9    0
12    13        3    13        4      16   0
0       0         0       0        0      0     0

0       0         0       0        0      0     0

Aber am Ende kann/ darf  ich ja trotzdem keine 1 in den 2 untersten Zeilen bekommen.
Heißt es, dass es keine eindeutige Lösung gibt ?




        
Bezug
Lineares Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Do 21.10.2010
Autor: bobbert

Also das mit der Lösbarkeit nehme ich zurück. Ob das LGs lösbar ist erkennt man erst wenn man die Determinante errechnet.

Allerdings weiß ich nicht wie man vorgeht wenn man eine Dreiecksform erreichen möchte?

Bezug
                
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Do 21.10.2010
Autor: wieschoo


> Also das mit der Lösbarkeit nehme ich zurück. Ob das LGs
> lösbar ist erkennt man erst wenn man die Determinante
> errechnet.

Das ist falsch(!) und die Determinante ist beidiesem Matrixformat nicht definiert.  Die Determinante kann man von quadratischen Matrizen errechnen.

Anhand der Determinante erkennt man auch nur die eindeutige Lösbarkeit. Die Lösbarkeit von [mm] $Ax=b\!$ [/mm] erkennt man wie folgt $rg(A)<rg('Ab')$ wobei "Ab" die Matrix A mit der zusätzlichen Spalte b ist.

>
> Allerdings weiß ich nicht wie man vorgeht wenn man eine
> Dreiecksform erreichen möchte?

Wikipedia: Gaußalgorithmus


Bezug
        
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 21.10.2010
Autor: wieschoo


> 2. Bestimmen Sie alle L ösungen des folgenden linearen
> Gleichungssystems:
>
> 4x1 + 3x2 − 7x3 + 11x4 − 6x6 = 0
> 8x1 + 8x2 − 5x3 + 12x4 − 2x5 + 3x6 = 0
> 4x1 + 5x2 + 2x3 + x4 − 2x5 + 9x6 = 0
> 12x1 + 13x2 − 3x3 + 13x4 − 4x5 + 16x6 = 0
>  Wenn dieses LGS mehr Spalten als Zeilen besitzt hat es
> dann überhaupt Schnittpunkte bzw. ist es überhaupt
> lösbar?

Ja es wird "lösbarer", da freie Variablen zur Verfügung stehen.


>
> Wollte das Gauß-Jordan Elimination anwenden nur konnte ich
> die Dreiecksform nicth aufstellen. Also dachte ich mir
> nehme ich noch 2 Zeilen mit jeweils 0 Koeffizienten dazu:

Das ändert nichts am Gleichungssystem. Aber wenn es schöner aussieht.

>
> 4       3         7     11        0       6    0
> 8       8         5     12        2      3    0
> 4       5         2       0       2       9    0
> 12    13        3    13        4      16   0
>  0       0         0       0        0      0     0
>  
> 0       0         0       0        0      0     0
>  
> Aber am Ende kann/ darf  ich ja trotzdem keine 1 in den 2
> untersten Zeilen bekommen.

Ja du kannst keine Zahlen bei der Dreiecksform in die unteren zwei Zeilen bekommen.

>  Heißt es, dass es keine eindeutige Lösung gibt ?

Es gibt hier keine eindeutige Lösung.

[mm] \left( \begin {array}{cccccc} 4&3&-7&11&0&-6\\ \noalign{\medskip}8&8& -5&12&-2&3\\ \noalign{\medskip}4&5&2&1&-2&9\\ \noalign{\medskip}12&13& -3&13&-4&16\end {array} \right) \to \left( \begin {array}{cccccc} 4&3&-7&11&0&-6\\ \noalign{\medskip}0&2& 9&-10&-2&15\\ \noalign{\medskip}0&0&0&0&0&4\\ \noalign{\medskip}0&0&0&0 &0&0\end {array} \right) [/mm]

>
>
>  


Bezug
                
Bezug
Lineares Gleichungssystem: Danke wieschoo!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Do 21.10.2010
Autor: bobbert

Dann weiß ich für's Erste  bescheid!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]