www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete OptimierungLineares Optimierungsproblen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Optimierung" - Lineares Optimierungsproblen
Lineares Optimierungsproblen < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Optimierungsproblen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:24 Sa 09.05.2009
Autor: jansimak

Aufgabe
Gegeben sei das lineare Optimierungsproblem

2x1 + 3x2 = min
x1 + x2 [mm] \le [/mm] 1
3x1 + 2x2 [mm] \ge [/mm] -5
x1,x2 [mm] \ge [/mm] 0

Bringen Sie das LP auf Standardform und berechnen Sie sämtliche Basislösungen. Welche Lösungen sind zulässig? Welche Ecken sind degeneriert, welche nicht?

Mein Lösungsansatz:

1) LP auf Standardform bringen

2x1 + 3x2 = min
x1 + x2 + x3 = 1
-3x1 - 2x2 + x4 = 5

2) Berechnen Sie sämtliche Basislösungen

[mm] \vmat{ 1 & 1 & 1 & 0 &\mid&1 \\ -3 & -2 & 0 & 1 & \mid & 5 } [/mm]

ZSF:

[mm] \vmat{ 1 & 0 & -2 & -1 &\mid&-7 \\ 0 & 1 & 3 & 1 & \mid & 8 } [/mm]

Spezielle Lösung:

x1 = -7
x2 = 8
x3 = 0
x4 = 0

ZF: 2(-7) + 3(8) = 10

Allgemeine Lösung:

x1 = -7 +2x3 + x4
x2 = 8 - 3x3 - x4

ZF: 2x1 + 3x2 = 10 - 5x3 - x4

Verkleinerung des Zielwertes durch Vergrößerung von x3, dabei ist x2 der Engpass

[mm] \vmat{ 1 & 0 & -2 & -1 &\mid&-7 \\ 0 & 1 & 3 & 1 & \mid & 8 } [/mm]

[mm] \vmat{ 1 & 0 & -2 & -1 &\mid&-7 \\ 0 & 1/3 & 1 & 1/3 & \mid & 8/3 } [/mm]

[mm] \vmat{ 1 & 2/3 & 0 & - 1/3 &\mid&- 5/3 \\ 0 & 1/3 & 1 & 1/3 & \mid & 8/3 } [/mm]

Spezielle Lösung:

x1= -5/3
x2=0
x3= 8/3
x4=0

ZF: 2(-5/3) = -10/3

Allgemeine Lösung:

x1 = -5/3 - 2/3 x2 + 1/3 x4
x3 = 8/3 -1/3 x2 - 1/3 x4

ZF:

2(-5/3 - 2/3 x2 + 1/3 x4) + 3x2
= -10/3 - 4/3 x2 + 2/3 x4 + 3x2
= -10/3 + 5/3 x2 + 2/3 x4

Durch Vergrößerung von x2,x4 keine Verbesserung des Funktionswertes mehr erreichbar.

So und jetzt weiß ich zum einen nicht, ob ich richtig gerechnet habe und zum anderen, ob ich jetzt zwei degenerierte Ecken vorliegen habe. Wir haben als Definition lediglich bekommen, dass eine Ecke degeneriert ist, wenn m Einträge in (x1,...xn) > 0  sind.

Das wäre meines Erachtens genau hier der Fall. Aber was bedeutet eine degenerierte Ecke denn geometrisch? Wir haben uns im zweidimensionalen Raum die "Ecken" angeschaut, aber wenn ich zwei zusätzliche Variablen einführe (Schlupfvariablen), dann erweitere ich den Raum doch in den [mm] R^4 [/mm] oder nicht? Wie wirken sich also zum einen die Schlupfvariablen aus und was bedeutet in diesem Zusammenhang eine degnerierte Ecke?






        
Bezug
Lineares Optimierungsproblen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Sa 09.05.2009
Autor: barsch

Hi,

> Gegeben sei das lineare Optimierungsproblem
>  
> 2x1 + 3x2 = min
>  x1 + x2 [mm]\le[/mm] 1
>  3x1 + 2x2 [mm]\ge[/mm] -5
>  x1,x2 [mm]\ge[/mm] 0
>  
> Bringen Sie das LP auf Standardform und berechnen Sie
> sämtliche Basislösungen. Welche Lösungen sind zulässig?
> Welche Ecken sind degeneriert, welche nicht?
>  Mein Lösungsansatz:
>  
> 1) LP auf Standardform bringen
>  
> 2x1 + 3x2 = min
>  x1 + x2 + x3 = 1
>  -3x1 - 2x2 + x4 = 5

[ok]

[mm] x_1,x_2,x_3,x_4\ge{0}. [/mm] Ganz wichtig, sonst führt es nur unnötig zu Punktabzügen. Und das solltest du auch in deinen folgenden Rechnungen beachten.

Wie sieht denn der zulässige Bereich S des linearen Programms aus?

Es ist

[mm] 2x_1+3x_2=min [/mm]
[mm] x_1+x_2+x_3=1 [/mm]
[mm] -3x_1-2x_2+x_4=5 [/mm]

[mm] x_1,x_2,x_3,x_4\ge{0} [/mm]

Definieren wir uns [mm] A:=\pmat{ 1 & 1 & 1 & 0 \\ -3 & -2 & 0 & 1 }, x:=\vektor{x_1 \\ x_2 \\ x_3 \\ x_4}, b:=\vektor{1 \\ 5} [/mm]

Dann ist [mm] S:=\{x|A*x=b,x_i\ge{0},i=1,2,3,4\} [/mm] die zulässige Menge des Problems.

> 2) Berechnen Sie sämtliche Basislösungen
>  
> [mm]\vmat{ 1 & 1 & 1 & 0 &\mid&1 \\ -3 & -2 & 0 & 1 & \mid & 5 }[/mm]
>  

Soweit reicht es eigentlich schon. Du wählst nun zwei Basisvariablen und dementsprechend ergeben sich zwei Nichtbasisvariablen. Beachte, Naichtbasisvariablen werden auf 0 gesetzt.


> ZSF:
>  
> [mm]\vmat{ 1 & 0 & -2 & -1 &\mid&-7 \\ 0 & 1 & 3 & 1 & \mid & 8 }[/mm]
>  
> Spezielle Lösung:
>
> x1 = -7
> x2 = 8
>  x3 = 0
>  x4 = 0

Das Vorgehen ist korrekt; du hast als Basisvariablen [mm] x_1 [/mm] und [mm] x_2 [/mm] gewählt. Stellt sich nur die Frage:
Kann das wirklich eine zulässige Basislösung sein? Bedenke: [mm] x_1\ge{0} [/mm] nach Voraussetzung!



> ZF: 2(-7) + 3(8) = 10
>  
> Allgemeine Lösung:
>  
> x1 = -7 +2x3 + x4
> x2 = 8 - 3x3 - x4
>
> ZF: 2x1 + 3x2 = 10 - 5x3 - x4



> Verkleinerung des Zielwertes durch Vergrößerung von x3,
> dabei ist x2 der Engpass
>  
> [mm]\vmat{ 1 & 0 & -2 & -1 &\mid&-7 \\ 0 & 1 & 3 & 1 & \mid & 8 }[/mm]
>  
> [mm]\vmat{ 1 & 0 & -2 & -1 &\mid&-7 \\ 0 & 1/3 & 1 & 1/3 & \mid & 8/3 }[/mm]
>  
> [mm]\vmat{ 1 & 2/3 & 0 & - 1/3 &\mid&- 5/3 \\ 0 & 1/3 & 1 & 1/3 & \mid & 8/3 }[/mm]
>  
> Spezielle Lösung:
>  
> x1= -5/3
>  x2=0
>  x3= 8/3
>  x4=0

Auch das ist korrekt. Du hast als Basisvariablen [mm] x_1 [/mm] und [mm] x_3 [/mm] gewählt.
Auch hier gilt: Kann das wirklich eine zulässige Basislösung sein? Bedenke: [mm] x_1\ge{0} [/mm] nach Voraussetzung!


  

> ZF: 2(-5/3) = -10/3
>  
> Allgemeine Lösung:
>  
> x1 = -5/3 - 2/3 x2 + 1/3 x4
> x3 = 8/3 -1/3 x2 - 1/3 x4
>  
> ZF:
>
> 2(-5/3 - 2/3 x2 + 1/3 x4) + 3x2
>  = -10/3 - 4/3 x2 + 2/3 x4 + 3x2
>  = -10/3 + 5/3 x2 + 2/3 x4
>  
> Durch Vergrößerung von x2,x4 keine Verbesserung des
> Funktionswertes mehr erreichbar.

> So und jetzt weiß ich zum einen nicht, ob ich richtig
> gerechnet habe und zum anderen, ob ich jetzt zwei
> degenerierte Ecken vorliegen habe.

Bis hier hast du keine zulässigen Basislösungen gefunden, da die Restriktion [mm] x\ge{0} [/mm] in beiden Fällen verletzt wurde.

> Wir haben als Definition
> lediglich bekommen, dass eine Ecke degeneriert ist, wenn m
> Einträge in (x1,...xn) > 0  sind.

Also wir haben es so definiert: Eine degenerierte Ecke liegt vor, wenn in einer zulässigen Basislösung eine Basisvariable den Wert 0 hat.

> Das wäre meines Erachtens genau hier der Fall. Aber was
> bedeutet eine degenerierte Ecke denn geometrisch? Wir haben
> uns im zweidimensionalen Raum die "Ecken" angeschaut, aber
> wenn ich zwei zusätzliche Variablen einführe
> (Schlupfvariablen), dann erweitere ich den Raum doch in den
> [mm]R^4[/mm] oder nicht? Wie wirken sich also zum einen die
> Schlupfvariablen aus und was bedeutet in diesem
> Zusammenhang eine degnerierte Ecke?

Geometrisch ist eine degenerierte Ecke folgendes: Wir befinden uns im [mm] \IR^2. [/mm] Wenn sich im [mm] \IR^2 [/mm] mehr als 3 Hyperbenen in einem zulässigen Eckpunkt schneiden, liegt eine degenerierte Ecke vor. Allgemein: Wenn sich im [mm] \IR^n [/mm] mehr als n Hyperbenen in einem zulässigen Eckpunkt schneiden, liegt eine degenerierte Ecke vor!

Zurück zu deinem konkreten Beispiel. Du hast einmal [mm] x_1 [/mm] und [mm] x_2 [/mm] als Basisvariablen genommen und ein anderes Mal [mm] x_1 [/mm] und [mm] x_3. [/mm]  Du musst, wenn du wild drauf losrechnest, was in dieser Aufgabe ja gefordert ist, alle möglich Kombinationen von Basisvariablen durchgehen. Sprich, du musst  [mm] \vektor{4 \\ 2} [/mm] Kombinationen ausprobieren, da du aus den insgesamt 4 Variablen [mm] x_1,x_2,x_3 [/mm] und [mm] x_4 [/mm] immer nur zwei für deine Basis auswählen musst. Da kann es dann passieren, dass du auf unzulässige Lösungen triffst - wie in deinem Falle, siehe oben. Das soll ja dann später mit dem Simplexalgorithmus behoben werden. Der Simplex prüft nämlich nur alle zulässigen Basislösungen auf deren Optimalität.

Wenn du alle Kombinationen ausprobiert und den jeweiligen Zielfunktionswert berechnet hast, wirst du als optimale Lösung:

Basisvariablen [mm] x_3 [/mm] und [mm] x_4 [/mm] und dementsprechend Nichtbasisvar. [mm] x_1 [/mm] und [mm] x_2 [/mm] mit ZF 3

erhalten!

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]