www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLinearität einer DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Linearität einer DGL
Linearität einer DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearität einer DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 So 18.05.2014
Autor: weeky

Hallo,
ich habe ein Regelungstechnisches Problem und habe dazu eine Differentialgleichung für den Zustandsraum. Es geht um die Winkelgeschwindigkeitsregelung einer Windkraftanlage. Dabei ist
[mm]v(t) = v_{mittel} + v_{Stoerung}(t) [/mm]  die Windgeschwindigkeit und [mm]\alpha[/mm] die vom Regler zu verstellende Größe.

Ich habe folgende Differentialgleichung erster Ordnung für die Winkelgeschwindigkeit aufgestellt:

[mm]\dot \omega(t)=\frac{k_1}{I_x} \cdot \alpha \cdot \omega(t) \cdot v(t) + \frac{k_2}{I_x} \cdot \omega(t) \cdot v(t) + \frac{k_3}{I_x} \cdot \alpha \cdot v(t)^2 + \frac{k_4}{I_x} \cdot v(t)^2 - \frac{d}{I_x} \cdot \omega (t)[/mm], wobei [mm]k_1,\,k_2,\,k_3,\,k_4,\,I_x,\,d,\,v_{mittel}[/mm] Konstanten sind.

Laut Aufgabenstellung ist die Differentialgleichung für den Zustandsraum nicht linear.


Eine DGL ist doch dann linear, wenn die Funktion, in diesem Falle [mm] \omega(t),\,\dot \omega(t)[/mm] nur linear vorkommt. Das ist doch hier der Fall oder ? [mm]v(t)[/mm] ist doch in diesem Falle nur ein nicht-konstanter Koeffizient ? Oder gilt vielleicht [mm]\alpha(\omega)[/mm] ?

Kann mir jemand helfen wo mein Denkfehler ist ? Danke

Ich habe diese Frage auch hier gepostet:

http://www.matheboard.de/thread.php?threadid=541096

        
Bezug
Linearität einer DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Mo 19.05.2014
Autor: leduart

Hallo
was ist denn das [mm] \alpha [/mm] ? oft bezeichnet man in Physik   [mm] \dot \omega(t)=\alpha(t) [/mm]
wenn [mm] \alppha [/mm] eine Konstante ist ist die Dgl linear inhomogen.
Gruß leduart

Bezug
                
Bezug
Linearität einer DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:32 Mo 19.05.2014
Autor: weeky

[mm]\alpha[/mm] ist hier in diesem Falle der Anstellwinkel der Rotorblätter des Windrades. Er kommt im aerodynamischen Moment vor:
[mm]M_A = k_1 \alpha \omega(t) v(t) + k_2 \omega(t) v(t) + k_3 \alpha v(t)^2 + k_4 v(t)^2[/mm]
welches durch den Drallsatz [mm]\dot \omega \cdot I_x = \sum M_i[/mm] in die DGL eingebunden wird

Es handelt sich um die Stellgröße des Systems, ist also auch zeitabhängig und somit [mm]\alpha(t)[/mm].
Das würde aber auch nichts an der Linearität der DGL ändern nehme ich an ?

Wahrscheinlich übersehe ich einen Regelungstechnischen Zusammenhang, statt einen mathematischen

Gruß



Bezug
        
Bezug
Linearität einer DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Mo 19.05.2014
Autor: fred97

Deine DGL ist von der Form

[mm] \dot \omega(t)=(c_1v(t)+c_2)* \omega(t)+c_3v(t)^3 [/mm]

Das ist eine inhomogene lineare DGL 1. Ordnung

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]