www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLinienintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Linienintegral
Linienintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linienintegral: "Tipp"
Status: (Frage) beantwortet Status 
Datum: 10:00 Di 15.11.2016
Autor: Ardbeg

Aufgabe
Sei $ [mm] F(r)=\vektor{x^{2} \\ z \\ y} [/mm] $ ein dreidimensionales Vektorfeld in kartesischen Koordinaten, mit $ [mm] r=\vektor{x \\ y \\ z} [/mm] $. Berechnen Sie das Linienintegral $ [mm] \integral_{\gamma}{F*dr} [/mm] $ entlang folgender Wege vom Ursprung $ [mm] r_{0}\equiv \vektor{0 \\ 0 \\ 0} [/mm] $ nach $ [mm] r_{1}\equiv \vektor{0 \\ 2 \\ -1}$: [/mm]

a) $ [mm] \gamma_{a}=\gamma_{1}\cup \gamma_{2} [/mm] $ ist der zusammengesetzte Weg aus [mm] \gamma_{1} [/mm] der geraden Linie $ [mm] r_{0} [/mm] $ nach $ [mm] r_{2}\equiv\vektor{1 \\ 1 \\ 1} [/mm] $, und [mm] \gamma_{2}, [/mm] der geraden Linie von $ [mm] r_{2} [/mm] $ nach $ [mm] r_{1} [/mm] $.

b) [mm] \gamma_{b} [/mm] ist die parametrisiert durch $ [mm] r(t)=\vektor{sin(\pi t) \\ 2\wurzel{t} \\ -t^{2}} [/mm] $, mit $ [mm] 0\le t\le [/mm] 1 $.

c) [mm] \gamma_{c} [/mm] ist eine in der y-z-Ebene liegende Parabel der Form  $ [mm] z(y)=y^{2}-\bruch{5}{2} [/mm] $.

Hallo!

Bei dieser Aufgabe habe ich anscheinend gerade eine Denkblockade. Muss ich bei der ersten Aufgabe nach linearen Funktionen parametrisieren? (Da gerade Linie in der Aufgabe steht). Also $ [mm] r(t)\equiv\vektor{x(t) \\ y(t) \\ z(t)} [/mm] $ , dann bilde ich die Verbindungsvektoren und fange an zu integrieren. Nur was sind dann meine Integrationsgrenzen?

Bei den anderen Aufgaben stehe ich derzeit auch noch etwas auf dem Schlauch.

Tipps wären gerne gesehen, danke.

Gruß
Ardbeg

        
Bezug
Linienintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Di 15.11.2016
Autor: leduart

Hallo
du parametrisierst den Weg von [mm] r_0 [/mm] nach [mm] r_1 [/mm] meist mit t=0 bei [mm] r_0 [/mm] und t=1 bei [mm] r_1 [/mm] dann sind deine Grenzen natürlich 0 und 1, entsprechend auf dem 2 ten Wegstück, die Kraft natürlich auch längs dieses Wegstücks, und ich hoffe du weisst dr=r'dt
bei b) hast du ja den Weg vorgegeben , bei c musst du das noch in Parameterform bringen, allerdings fehlen da Grenzen  ist die Aufgabe c) wie sie da steht vollständig?
Gruß leduart

Bezug
                
Bezug
Linienintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Di 15.11.2016
Autor: Ardbeg

Also vorneweg, ich habe nichts weggelassen, die Aufgabenstellungen sind wirklich so gewesen. Daher auch meine leichte Verwirrung.

Danke für die Erklärung zur a), habe wirklich lange überlegt, wie ich auf die Grenzen kommen soll.

Ich schaue mal, dass ich die anderen Aufgaben noch hinbekomme.

Gruß
Ardbeg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]