Lipschitz-Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:19 Mi 13.12.2006 | Autor: | gore |
Aufgabe | Die Funktion [mm] g(x):=\wurzel{x} [/mm] ist auf jedem Intervall [mm] [a,\infty) [/mm] mit a>0 l-stetig, also auch gleichmäßig stetig. Dagegen ist g auf [0,1] zwar gleichmäßig stetig, aber nicht l-stetig. Außerdem folgere man, dass g auf ganz [mm] [0,\infty) [/mm] gleichmäßig stetig ist. |
Hi,
diese Aufgabe bereitet mir etwas Sorgen, denn ich weiß eigentlich nicht, was L-stetigkeit ist. Das kam nicht einmal in der Vorlesung dran und ich habe nur die Definition: [mm] \forall [/mm] x,y [mm] \in [/mm] D : [mm] |f(x)-f(y)|\leL*|x-y|, [/mm] wobei L die L-Konstante [mm] \in \IR [/mm] ist.
So, jetzt verstehe ich das aber so, dass ich einsetzen muss und dann käme etwa bei dem Intervall [0,1] folgendes raus: Sei z.B. L=2, dann
[mm] |g(1)-g(0)|\le [/mm] L*|1-0| [mm] \gdw |\wurzel{1}-\wurzel{0}|\le [/mm] 2*|1-0| [mm] \Rightarrow 1\le [/mm] 2.
Das ist 1. viel zu einfach und 2. sowieso blödsinnig, denn gerade in dem Intervall soll die l-Stetigkeit ja nicht gelten...
Kann mir da jemand helfen?
Danke
Gruß
|
|
|
|
Hallo,
> Die Funktion [mm]g(x):=\wurzel{x}[/mm] ist auf jedem Intervall
> [mm][a,\infty)[/mm] mit a>0 l-stetig, also auch gleichmäßig stetig.
> Dagegen ist g auf [0,1] zwar gleichmäßig stetig, aber nicht
> l-stetig. Außerdem folgere man, dass g auf ganz [mm][0,\infty)[/mm]
> gleichmäßig stetig ist.
> Hi,
> diese Aufgabe bereitet mir etwas Sorgen, denn ich weiß
> eigentlich nicht, was L-stetigkeit ist. Das kam nicht
> einmal in der Vorlesung dran und ich habe nur die
> Definition: [mm]\forall[/mm] x,y [mm]\in[/mm] D : [mm]|f(x)-f(y)|\le L*|x-y|,[/mm]
> wobei L die L-Konstante [mm]\in \IR[/mm] ist.
Hmm, bist du sicher, dass das nicht in der VL drankam? kann ich mir kaum vorstellen, dass dann diese aufgabe gestellt wird.
>
> So, jetzt verstehe ich das aber so, dass ich einsetzen muss
> und dann käme etwa bei dem Intervall [0,1] folgendes raus:
> Sei z.B. L=2, dann
> [mm]|g(1)-g(0)|\le[/mm] L*|1-0| [mm]\gdw |\wurzel{1}-\wurzel{0}|\le[/mm]
> 2*|1-0| [mm]\Rightarrow 1\le[/mm] 2.
> Das ist 1. viel zu einfach und 2. sowieso blödsinnig, denn
> gerade in dem Intervall soll die l-Stetigkeit ja nicht
> gelten...
> Kann mir da jemand helfen?
> Danke
> Gruß
>
Also L-stetigkeit bedeutet ja nicht, dass die genannte ungleichung für bestimme $x,y$ gilt, sondern für ALLE. ein paar tips zur aufgabe:
- man kann recht leicht zeigen, dass funktionen mit beschränkter ableitung L-stetig sind, und zwar über den hauptsatz der diff- und int-rechnung. damit hast du teil 1
- g hat auf [0,1] eine unbeschränkte ableitung. du kannst folgern, dass g nicht L-stetig ist. andererseits sind stetige funktionen auf kompakten mengen automatisch G-stetig.
- teil c schaffst du auch alleine, oder?
Gruß
Matthias
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 11:08 Do 14.12.2006 | Autor: | gore |
hi, danke.
ja, war echt nicht in der Vorlesung. Ich habe nur die Definition auf dem Übungsblatt und eine Aufgabe dazu, die im Tutorium gerechnet werden SOLLTE, aber nicht gerechnet wurde. :/
Ok, also gilt die L-Konstante für alle Variablen in dem Intervall... Folglich muss bei meiner Aufgabe die 0 der Knackpunkt sein, da die Funktion für alle Werte größer 0 bis unendlich ja l-stetig ist.
Also muss ich jetzt eine L-Konstante für den Bereich größer 0 bis unendlich finden. Die gilt aber nicht, wenn die 0 dabei ist. ja??
Wenn das stimmt, hilft mir das schon mal, auch wenn ich nicht weiß, wie ich auf die L-Konstante kommen soll...
Grüße
Andi.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Sa 16.12.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|