www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösen von Diffgl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Lösen von Diffgl.
Lösen von Diffgl. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Diffgl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 18.01.2006
Autor: stevarino

Hallo

Hab hier folgende Diffgleichung

[mm] y'=\bruch{y^{2}+2xy}{x^{2}} [/mm] hab versucht es so zu lösen

[mm] -(y^{2}-2xy)+x^{2}y'=0 [/mm]

f(x,y)+g(x,y)y'=0

[mm] f_{y}=-2y-2x [/mm]
[mm] g_{x}=2x [/mm]
bedeutet keine exakte Diffgleichung dann wollt ich sie exakt machen mit einem integrierenden Faktor
[mm] \bruch{f_{y}-g_{x}}{g}=\bruch{-2y-2x-2x }{x^{2}}=\bruch{-2y-4x}{x^{2}} [/mm] hängt von x und y ab
[mm] \bruch{f_{y}-g_{x}}{f}=\bruch{-2y-4x }{-y^{2}-2xy}=\bruch{-2y-4x }{y*(-y-2x)} [/mm] das hängt aber auch von x und y ab ??????

Bin ich bei meinem Lösungsweg überhaupt richtig oder löst man das ganz anders???

Danke

lg Stevo


        
Bezug
Lösen von Diffgl.: Substitution
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 18.01.2006
Autor: MathePower

Hallo stevarino,

> Hallo
>  
> Hab hier folgende Diffgleichung
>  
> [mm]y'=\bruch{y^{2}+2xy}{x^{2}}[/mm] hab versucht es so zu lösen
>  
> [mm]-(y^{2}-2xy)+x^{2}y'=0[/mm]
>  
> f(x,y)+g(x,y)y'=0
>  
> [mm]f_{y}=-2y-2x[/mm]
>  [mm]g_{x}=2x[/mm]
> bedeutet keine exakte Diffgleichung dann wollt ich sie
> exakt machen mit einem integrierenden Faktor
>  [mm]\bruch{f_{y}-g_{x}}{g}=\bruch{-2y-2x-2x }{x^{2}}=\bruch{-2y-4x}{x^{2}}[/mm]
> hängt von x und y ab
>  [mm]\bruch{f_{y}-g_{x}}{f}=\bruch{-2y-4x }{-y^{2}-2xy}=\bruch{-2y-4x }{y*(-y-2x)}[/mm]
> das hängt aber auch von x und y ab ??????
>  
> Bin ich bei meinem Lösungsweg überhaupt richtig oder löst
> man das ganz anders???


in der Tat, diese DGL löst man ganz anders.

Benutze hierzu die Substitution

[mm] \begin{gathered} y\; = \;u\;x \hfill \\ y'\; = \;u'\;x\; + \;u \hfill \\ \end{gathered} [/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]