www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLösung Ax=b
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Lösung Ax=b
Lösung Ax=b < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung Ax=b: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 26.11.2014
Autor: MeMeansMe

Aufgabe
Seien $A = [mm] \pmat{1 & 3 & 1 & 1 \\ 0 & 2 & 6 & 4 \\ 1 & 5 & 2 & 0 \\ 1 & 0 & -1 & 0}$ [/mm] und $b = [mm] \vektor{2\\2\\0\\1}$. [/mm] Schaue, ob das System $Ax=b$ eine Lösung hat, ohne eine Lösung auszurechnen.

Hey,

meine Frage bezieht sich mehr auf die Vorgehensweise. Aus einem Satz folgt, dass ein System $Ax=b$ eine Lösung hat, wenn die Matrix $A$ invertierbar ist. Eine Matrix $A$ ist invertierbar genau dann, wenn all seine Spalten linear unabhängig sind. Kann ich hier also einfach schauen, ob die vier Spalten der Matrix ein linear unabhängiges System bilden? Dann habe ich keine Lösung berechnet, weil ich den Vektor $b$ ja dabei nicht benutze.

Liebe Grüße.

        
Bezug
Lösung Ax=b: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mi 26.11.2014
Autor: Al-Chwarizmi


> Seien [mm]A = \pmat{1 & 3 & 1 & 1 \\ 0 & 2 & 6 & 4 \\ 1 & 5 & 2 & 0 \\ 1 & 0 & -1 & 0}[/mm]
> und [mm]b = \vektor{2\\2\\0\\1}[/mm]. Schaue, ob das System [mm]Ax=b[/mm]
> eine Lösung hat, ohne eine Lösung auszurechnen.
>  Hey,
>  
> meine Frage bezieht sich mehr auf die Vorgehensweise. Aus
> einem Satz folgt, dass ein System [mm]Ax=b[/mm] eine Lösung hat,
> wenn die Matrix [mm]A[/mm] invertierbar ist. Eine Matrix [mm]A[/mm] ist
> invertierbar genau dann, wenn all seine Spalten linear
> unabhängig sind. Kann ich hier also einfach schauen, ob
> die vier Spalten der Matrix ein linear unabhängiges System
> bilden? Dann habe ich keine Lösung berechnet, weil ich den
> Vektor [mm]b[/mm] ja dabei nicht benutze.     [ok]

Richtig !

Falls diese Spaltenvektoren aber trotzdem nicht linear
unabhängig sein sollten, könnte der Nachweis etwas
schwieriger werden.

LG   ,  Al-Chw.


Bezug
                
Bezug
Lösung Ax=b: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mi 26.11.2014
Autor: MeMeansMe


> > Seien [mm]A = \pmat{1 & 3 & 1 & 1 \\ 0 & 2 & 6 & 4 \\ 1 & 5 & 2 & 0 \\ 1 & 0 & -1 & 0}[/mm]
> > und [mm]b = \vektor{2\\2\\0\\1}[/mm]. Schaue, ob das System [mm]Ax=b[/mm]
> > eine Lösung hat, ohne eine Lösung auszurechnen.
>  >  Hey,
>  >  
> > meine Frage bezieht sich mehr auf die Vorgehensweise. Aus
> > einem Satz folgt, dass ein System [mm]Ax=b[/mm] eine Lösung hat,
> > wenn die Matrix [mm]A[/mm] invertierbar ist. Eine Matrix [mm]A[/mm] ist
> > invertierbar genau dann, wenn all seine Spalten linear
> > unabhängig sind. Kann ich hier also einfach schauen, ob
> > die vier Spalten der Matrix ein linear unabhängiges System
> > bilden? Dann habe ich keine Lösung berechnet, weil ich den
> > Vektor [mm]b[/mm] ja dabei nicht benutze.     [ok]
>  
> Richtig !
>  
> Falls diese Spaltenvektoren aber trotzdem nicht linear
>  unabhängig sein sollten, könnte der Nachweis etwas
>  schwieriger werden.

Die Matrix lässt sich auf [mm] $I_4$ [/mm] reduzieren, was ja heißt, dass ihre Spalten linear unabhängig sind (habe ich kontrolliert).

Nur mal aus Interesse: Wenn das nicht so wäre, wären die Spalten linear abhängig. Ich wüsste, wie ich dann die Lösungen berechnen könnte. Aber da man keine Lösung berechnen darf, wüsste ich nicht, wie es gehen sollte. Könntest du (oder jemand Anders) hier kurz drauf eingehen?

Liebe Grüße.

Bezug
                        
Bezug
Lösung Ax=b: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mi 26.11.2014
Autor: fred97


> > > Seien [mm]A = \pmat{1 & 3 & 1 & 1 \\ 0 & 2 & 6 & 4 \\ 1 & 5 & 2 & 0 \\ 1 & 0 & -1 & 0}[/mm]
> > > und [mm]b = \vektor{2\\2\\0\\1}[/mm]. Schaue, ob das System [mm]Ax=b[/mm]
> > > eine Lösung hat, ohne eine Lösung auszurechnen.
>  >  >  Hey,
>  >  >  
> > > meine Frage bezieht sich mehr auf die Vorgehensweise. Aus
> > > einem Satz folgt, dass ein System [mm]Ax=b[/mm] eine Lösung hat,
> > > wenn die Matrix [mm]A[/mm] invertierbar ist. Eine Matrix [mm]A[/mm] ist
> > > invertierbar genau dann, wenn all seine Spalten linear
> > > unabhängig sind. Kann ich hier also einfach schauen, ob
> > > die vier Spalten der Matrix ein linear unabhängiges System
> > > bilden? Dann habe ich keine Lösung berechnet, weil ich den
> > > Vektor [mm]b[/mm] ja dabei nicht benutze.     [ok]
>  >  
> > Richtig !
>  >  
> > Falls diese Spaltenvektoren aber trotzdem nicht linear
>  >  unabhängig sein sollten, könnte der Nachweis etwas
>  >  schwieriger werden.
>  
> Die Matrix lässt sich auf [mm]I_4[/mm] reduzieren, was ja heißt,
> dass ihre Spalten linear unabhängig sind (habe ich
> kontrolliert).
>
> Nur mal aus Interesse: Wenn das nicht so wäre, wären die
> Spalten linear abhängig. Ich wüsste, wie ich dann die
> Lösungen berechnen könnte. Aber da man keine Lösung
> berechnen darf, wüsste ich nicht, wie es gehen sollte.
> Könntest du (oder jemand Anders) hier kurz drauf
> eingehen?
>  
> Liebe Grüße.


Das LGS Ax=b ist genau dann lösbar, wenn RangA=Rang(A|b)

FRED

Bezug
                                
Bezug
Lösung Ax=b: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Do 27.11.2014
Autor: MeMeansMe

Alles klar. Danke euch! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]