www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösung GLS
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Lösung GLS
Lösung GLS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung GLS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Sa 29.10.2011
Autor: tedd

Aufgabe
Bestimmen Sie den Vektor [mm] \vektor{a \\ b} [/mm] für:

[mm] \pmat{\cos(\beta)-1 && \sin(\beta)*e^{-i\alpha}\\\sin(\beta)*e^{i\alpha} && -\cos(\beta)-1}\cdot\vektor{a\\b}=\vec{0} [/mm]

Die 2 Gleichungen sind klar:

[mm] $\left(\cos(\beta)-1\right) \cdot [/mm] a + [mm] \left(\sin(\beta)\cdot e^{-i\alpha}\right)\cdot [/mm] b=0$

und

[mm] $\left(\sin(\beta)\cdot e^{i\alpha}\right) \cdot [/mm] a - [mm] \left(\cos(\beta)+1\right)\cdot [/mm] b=0$

nach jeweils a und b aufgelöst ergibt sich folgendes:

[mm] $\left(\cos(\beta)-1\right) \cdot [/mm] a + [mm] \left(\sin(\beta)\cdot e^{-i\alpha}\right)\cdot [/mm] b=0 [mm] \gdw a=-\frac{\left(\sin(\beta)\cdot e^{-i\alpha}\right)}{\left(\cos(\beta)-1\right)}\cdot [/mm] b$


[mm] $\left(\sin(\beta)\cdot e^{i\alpha}\right) \cdot [/mm] a - [mm] \left(\cos(\beta)+1\right)\cdot [/mm] b=0 [mm] \gdw b=\frac{\left(\sin(\beta)\cdot e^{i\alpha}\right)}{\left(\cos(\beta)+1\right)}\cdot [/mm] a$


Setzt man nun a in b oder umgekehrt ein erhält man,

a=a oder b=b....
was ja (für jeden Definitionsbereich?!) erfüllt sein dürfte?
Heißt das, dass man unendlich viele Lösungen bekommt?
Bin diesbezüglich in der LA ein bisschen eingerostet...

Kann man die beiden Gleichungen folgendermaßen umformen und einen "Vergleich" machen?

[mm] $a=-\frac{\left(\sin(\beta)\cdot e^{-i\alpha}\right)}{\left(\cos(\beta)-1\right)}\cdot [/mm] b [mm] \gdw \frac{a}{b}=-\frac{\left(\sin(\beta)\cdot e^{-i\alpha}\right)}{\left(\cos(\beta)-1\right)}$ [/mm] ... so ist der Zähler = a und der Nenner = b?
Wenn ja, wieso darf ich das?

Für die andere Gleichung würde man folgendes bekommen...

[mm] $b=\frac{\left(\sin(\beta)\cdot e^{i\alpha}\right)}{\left(\cos(\beta)+1\right)}\cdot [/mm] a [mm] \gdw \frac{a}{b}=\frac{\left(\cos(\beta)+1\right)}{\left(\sin(\beta)\cdot e^{i\alpha}\right)}$ [/mm]

was ja nicht dem oberen [mm] $\frac{a}{b}$ [/mm] entspricht... (es sei denn man kann das irgendwie auf die selbe Form bringen...


Danke und Gruß
tedd

        
Bezug
Lösung GLS: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 29.10.2011
Autor: MathePower

Hallo tedd,

> Bestimmen Sie den Vektor [mm]\vektor{a \\ b}[/mm] für:
>  
> [mm]\pmat{\cos(\beta)-1 && \sin(\beta)*e^{-i\alpha}\\\sin(\beta)*e^{i\alpha} && -\cos(\beta)-1}\cdot\vektor{a\\b}=\vec{0}[/mm]
>  
> Die 2 Gleichungen sind klar:
>  
> [mm]\left(\cos(\beta)-1\right) \cdot a + \left(\sin(\beta)\cdot e^{-i\alpha}\right)\cdot b=0[/mm]
>  
> und
>
> [mm]\left(\sin(\beta)\cdot e^{i\alpha}\right) \cdot a - \left(\cos(\beta)+1\right)\cdot b=0[/mm]
>  
> nach jeweils a und b aufgelöst ergibt sich folgendes:
>  
> [mm]\left(\cos(\beta)-1\right) \cdot a + \left(\sin(\beta)\cdot e^{-i\alpha}\right)\cdot b=0 \gdw a=-\frac{\left(\sin(\beta)\cdot e^{-i\alpha}\right)}{\left(\cos(\beta)-1\right)}\cdot b[/mm]
>  
>
> [mm]\left(\sin(\beta)\cdot e^{i\alpha}\right) \cdot a - \left(\cos(\beta)+1\right)\cdot b=0 \gdw b=\frac{\left(\sin(\beta)\cdot e^{i\alpha}\right)}{\left(\cos(\beta)+1\right)}\cdot a[/mm]
>  

Die Auflösung geht ja nur, wenn [mm]\cos\left(\beta\right)-1 \not= 0[/mm]
bzw. [mm]\cos\left(\beta\right)+1 \not= 0[/mm] sind.


>
> Setzt man nun a in b oder umgekehrt ein erhält man,
>  
> a=a oder b=b....
>  was ja (für jeden Definitionsbereich?!) erfüllt sein
> dürfte?
>  Heißt das, dass man unendlich viele Lösungen bekommt?


Das kannst Du überprüfen, wenn Du die
Determinante der obigen Matrix berechnest.


>  Bin diesbezüglich in der LA ein bisschen eingerostet...
>  
> Kann man die beiden Gleichungen folgendermaßen umformen
> und einen "Vergleich" machen?
>  
> [mm]a=-\frac{\left(\sin(\beta)\cdot e^{-i\alpha}\right)}{\left(\cos(\beta)-1\right)}\cdot b \gdw \frac{a}{b}=-\frac{\left(\sin(\beta)\cdot e^{-i\alpha}\right)}{\left(\cos(\beta)-1\right)}[/mm]
> ... so ist der Zähler = a und der Nenner = b?


Ja.


> Wenn ja, wieso darf ich das?
>  


Das darfst Du genau dann, wenn zusätzlich [mm]b \not=0[/mm] ist.


> Für die andere Gleichung würde man folgendes bekommen...
>  
> [mm]b=\frac{\left(\sin(\beta)\cdot e^{i\alpha}\right)}{\left(\cos(\beta)+1\right)}\cdot a \gdw \frac{a}{b}=\frac{\left(\cos(\beta)+1\right)}{\left(\sin(\beta)\cdot e^{i\alpha}\right)}[/mm]
>  
> was ja nicht dem oberen [mm]\frac{a}{b}[/mm] entspricht... (es sei
> denn man kann das irgendwie auf die selbe Form bringen...
>  
>
> Danke und Gruß
>  tedd


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]