www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenLoesung PDE
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Loesung PDE
Loesung PDE < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Loesung PDE: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:05 So 27.08.2017
Autor: Chris84

Huhu,
ich habe mal wieder eine Frage:

Ich habe die inhomogene partielle Differentialgleichung

$ [mm] \frac{m_e}{n_e q_e}\frac{1}{4\pi c}\frac{\partial}{\partial t}\Delta \vec{C}(\vec{r},t)-\frac{m_e}{n_e q_e}\frac{1}{4\pi c^3}\frac{\partial^3}{\partial t^3}\vec{C}(\vec{r},t)-q_m \vec{\nabla}\times\vec{C}(\vec{r},t)=\vec{S}(\vec{r},t)$, [/mm]

wobei [mm] $\Delta$ [/mm] der Laplaceoperator, [mm] $\vec{S}$ [/mm] eine Stoerfunktion und [mm] $\vec{C}$ [/mm] die gesuchte Funktion sind.

Die homogene Loesung ist einfach zu berechnen; sie lautet

[mm] $\vec{C}_{hom}(\vec{r},t)=\vec{a}\cdot e^{\vec{k}\cdot\vec{r}-\omega\cdot t}$ [/mm]
mit [mm] $\vec{a}\perp\vec{k}$ [/mm] und [mm] $k^2=\omega^2/c^2$. [/mm]

Die Problem ist nun die partikulaere Loesung. Mein Ansatz war der ueber die Greenschen Funktionen. Fuer die Greensche Funktion [mm] $\vec{G}(\vec{r},t)$ [/mm] lautet dann die entsprechende PDE:

$ [mm] \frac{m_e}{n_e q_e}\frac{1}{4\pi c}\frac{\partial}{\partial t}\Delta \vec{G}(\vec{r},t)-\frac{m_e}{n_e q_e}\frac{1}{4\pi c^3}\frac{\partial^3}{\partial t^3}\vec{G}(\vec{r},t)-q_m \vec{\nabla}\times\vec{G}(\vec{r},t)=\delta(\vec{r})\delta(t)\vec{a}$ [/mm]

wobei [mm] $\delta(\cdot)$ [/mm] die Diracsche Deltedistribution bezeichne.

So, aber diese PDE ist nicht einfach zu loesen. Meine erste Idee, war in den vierdimensionalen Fourierraum zu wechseln. Mit

[mm] $\delta(t)=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty} e^{i\omega t} d\omega [/mm]
[mm] \delta(t)=\frac{1}{(2\pi)^3}\int\limits_{\IR^3} e^{i\vec{k}\cdot\vec{r}} d^3\vec{k} [/mm]
[mm] \vec{G}(\vec{r},t)=\frac{1}{(2\pi)^4}\int\limits_{\IR^4} \hat{\vec{G}}(\vec{k},\omega) e^{i\vec{k}\cdot\vec{r}+i\omega t} d^3\vec{k} d\omega$ [/mm]

und [mm] $\alpha:=frac{m_e}{n_e q_e}\frac{1}{4\pi c}$ [/mm] bekommt man die Gleichung

[mm] $-i\omega k^2\alpha \hat{\vec{G}}+i\omega^3\frac{\alpha}{c^2} \hat{\vec{G}}-q_m [/mm] i [mm] \vec{k}\times\hat{\vec{G}}=\vec{a}$ [/mm] (*).

Die Loesung dieser algebraischen Gleichung ist

[mm] $\hat{\vec{G}}(\vec{k},\omega)=\frac{(-i\omega k^2\alpha+i\omega^3\frac{\alpha}{c^2})\vec{a}}{(-i\omega k^2\alpha+i\omega^3\frac{\alpha}{c^2})-q_m^2 k^2}-\frac{q_m^2(\vec{k}\cdot\vec{a})\vec{k}}{(-i\omega k^2\alpha+i\omega^3\frac{\alpha}{c^2})^3-(-i\omega k^2\alpha+i\omega^3\frac{\alpha}{c^2})q_m^2 k^2}+\frac{i q_m\vec{k}\times\vec{a}}{(-i\omega k^2\alpha+i\omega^3\frac{\alpha}{c^2})^2-q_m^2k^2}$. [/mm]

Das Problem ist nun diese Loesung zurueck zu transformieren. Da man fuer den ersten Term Kugelkoordinaten fuer [mm] $\vec{k}$ [/mm] benutzen kann, habe ich mich mal daran versucht. Am Ende bleibt das Integral

[mm] $\int\limits_{-\infty}^{\infty} d\omega \omega^2 e^{-\frac{q_m}{2\omega\alpha}r}\left[\frac{2\left(\frac{q_m}{2\omega\alpha}\right)^2}{\sqrt{-\left(\frac{q_m}{2\omega\alpha}\right)^2+\frac{\omega^2}{c^2}}}\sin\left(\sqrt{-\left(\frac{q_m}{2\omega\alpha}\right)^2+\frac{\omega^2}{c^2}} r\right)-\frac{2q_m}{\omega\alpha}\cos\left(\sqrt{-\left(\frac{q_m}{2\omega\alpha}\right)^2+\frac{\omega^2}{c^2}} r\right)\right]e^{i\omega t}$. [/mm]

Mal davon abgesehen, dass ich keine Idee habe, wie man dieses Monstrum berechnen soll, scheint es, dass das Integral nicht 'mal konvergent ist.

Meine naechste Idee war, (*) nur in [mm] $\vec{r}$ [/mm] zu transformieren (um die Ruecktransformation zu vereinfachen). Dies fuehrt zur gewoehnlichen Differentialgleichung

$ [mm] \frac{m_e}{n_e q_e}\frac{1}{4\pi c}\frac{\partial}{\partial t} (-k^2) \hat{\vec{G}}(\vec{k},t)-\frac{m_e}{n_e q_e}\frac{1}{4\pi c^3}\frac{\partial^3}{\partial t^3}\hat{\vec{G}}(\vec{k},t)-q_m i\vec{k}\times\hat{\vec{G}}(\vec{k},t)=\delta(t)\vec{a}$ [/mm] (**).

Wenn ich diese ODE loesen koennte, muesste ich nur in [mm] $\vec{k}$ [/mm] zuruecktransformieren. Die homogene Loesung zu bekommen, ist auch hier nicht sonderlich schwierig. Allerdings scheitere ich auch hier wieder an der partikulaeren Loesung (Variation der Konstanten habe ich versucht, liefert nur leider keine Loesung).

Hat vlt. jemand eine Idee, wie man die ODE (**) oder die urspruengliche PDE (*) loesen koennte.

Gruss,
Chris

P.S.: Es scheint, dass der Latexeditor gerade nicht funktioniert. Das macht das Kontrollieren der eingegeben Formeln nicht gerade einfach. Ich bitte um Nachsicht.

        
Bezug
Loesung PDE: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 27.09.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Loesung PDE: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Mi 27.09.2017
Autor: Martinius

Hallo Chris84,

Du könntest auch hier:

[]http://matheplanet.org/

fragen.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]