Lösung der Gleichung < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:34 Mo 31.01.2005 | Autor: | joas |
Hallo,
ich soll die Anzahl der reellen Lösungen der folgenden Gleichung bestimmen:
[mm] 2^{x}=1+x^{2}.
[/mm]
Das soll mit dem Zwischenwertsatz klappen. Leider komm ich damit niht zurecht.
Gruß joas
|
|
|
|
Hallo, joas,
bin mir nicht sicher, ob ich Dir wirklich helfen kann, aber einen Versuch ist's wert.
Also erst schreib' ich mal alles Wesentliche auf eine Seite und erhalte:
[mm] 2^{x}-x^{2}-1=0. [/mm]
Den Term auf der linken Seite nenne ich ab jetzt f(x).
Gesucht ist nun also die Anzahl der Nullstellen von f(x).
Ziel: Diese über das Monotonieverhalten von f zu ermitteln.
Daher leite ich ab:
[mm] f'(x)=ln(2)*2^{x}-2x
[/mm]
Die Vorzeichen von f' sind nicht auf Anhieb ersichtlich.
Daher leite ich nochmal ab: [mm] f"(x)=(ln(2))^{2}*2^{x}-2.
[/mm]
f" ist übersichtlicher: Es ist eine echt monoton zunehmende Exponentialfunktion mit NS bei x=2.
Das bedeutet: Der Graph von f' hat bei x=2 einen Tiefpunkt.
Dessen x-Koordinate f'(2) lässt sich berechnen; sie ist jedenfalls negativ.
Der Graph von f' ist links von x=2 echt mon. fallend, rechts steigend.
Da er zudem für [mm] x\to\pm\infty [/mm] gegen [mm] +\infty [/mm] geht, hat er genau 2 Nullstellen [mm] x_{1,2}, [/mm] sagen wir: [mm] x_{1} [/mm] sei diejenige links von x=2, [mm] x_{2} [/mm] diejenige rechts von x=2.
An diesen beiden Stellen wechselt der Graph von f' jeweils des Vorzeichen.
(Das ist wichtig!)
Nun zur Funktion f selbst: Aus den Vorzeichenwechseln von f' erkennt man: Die Funktion hat genau zwei Extrempunkte mit den x-Koordinaten [mm] x_{1} [/mm] und [mm] x_{2}.
[/mm]
Wegen des Steigungsverhaltens (Vorzeichen von f'!) ist bei [mm] x_{1} [/mm] (also links) der Hochpunkt, bei [mm] x_{2} [/mm] der Tiefpunkt.
Nun haben wir Glück, dass man zwei Nullstellen von f erraten kann:
f(0)=0, f(1)=0. Nimmt man nun noch den Zwischenwertsatz zu Hilfe (und probiert ein bisschen rum), so bemerkt man, dass f(4)<0 und f(5)>0 ist: Zwischen x=4 und x=5 liegt demnach (f ist stetig!) eine weitere Nullstelle.
Aus dem Steigungsverhalten von f ergibt sich, dass diese drei NS die einzigen sind!
(Reicht ja wohl auch, oder?)
Ich hoffe, ich habe nichts übersehen!
mfG!
Zwerglein
|
|
|
|