Lösung des rekursiven Gleichun < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:26 So 17.06.2007 | Autor: | Clarix |
Aufgabe | Man löse das rekursive Gleichungssystem a(0)=0 b(0)=2, a(n+1)= 3a(n)+2b(n), b(n+1)=a(n)+b(n) durch Angabe einer direkten Formel für a(n) und b(n) in Abhängigkeit von n. |
Ich denke mal, dass man das mit Vektoren und Matrizen machen muss, allerdings bekomme ich für a(n) keine Formel raus... ich wäre sehr froh, wenn mir jemand helfen könnte... ich glaube mein Lösungsansatz ist auch falsch.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:18 So 17.06.2007 | Autor: | Bastiane |
Hallo Clarix!
> Man löse das rekursive Gleichungssystem a(0)=0 b(0)=2,
> a(n+1)= 3a(n)+2b(n), b(n+1)=a(n)+b(n) durch Angabe einer
> direkten Formel für a(n) und b(n) in Abhängigkeit von n.
> Ich denke mal, dass man das mit Vektoren und Matrizen
> machen muss, allerdings bekomme ich für a(n) keine Formel
> raus... ich wäre sehr froh, wenn mir jemand helfen
> könnte... ich glaube mein Lösungsansatz ist auch falsch.
Hilft es nicht, wenn du mal ein paar Werte berechnest? Also a(1), b(1) usw.? Und wenn du das hast, kannst du sie hier vllt mal posten, dann muss sie nicht jeder, der helfen will, alleine berechnen.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:49 So 17.06.2007 | Autor: | Vreni |
Hallo Clarix,
ich denke ein Ansatz über Vektoren und Matrizen ist durchaus vernünftig und lässt sich auch recht problemlos aufstellen. Ich gebe dir mal die Beziehung von a(n+1), b(n+1) und a(n), b(n) in Vektor-Matrixschreibweise an:
[mm] $$\left( \begin{array}{c}
a(n+1) \\ b(n+1) \end{array} \right) [/mm] = M [mm] \cdot \left( \begin{array}{c} a(n) \\ b(n) \end{array} \right) [/mm] = [mm] \left( \begin{array}{cc} 3 & 2 \\ 1 & 1 \end{array} \right) \cdot \left( \begin{array}{c} a(n) \\ b(n) \end{array} \right)$$
[/mm]
Jetzt überleg dir mal, wie du [mm] \left(\begin{array}{c}
a(n) \\ b(n) \ \end{array}\right) [/mm] in Abhängigkeit von M und [mm] \left(\begin{array}{c} a(0) \\ b(0) \end{array}\right)
[/mm]
ausdrücken kannst.
Dann würde ich weiter über Diagonlisierung (Eigenwerte und Eigenräume) gehen, aber ich bin mir nicht mehr ganz sicher wies geht und außerdem ists ein ziemlicher Rechenaufwand für die Uhrzeit. Aber wenn du dazu noch Fragen hast schau ich morgen gern mal nach.
Vielleicht reicht auch die Darstellung mit der Matrix (also die on Abhängigkeit von a(0) und b(0)) für dich schon aus.
Gruß,
Vreni
|
|
|
|