www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung einer gDgl
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung einer gDgl
Lösung einer gDgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer gDgl: TdV Integration
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 17.10.2007
Autor: Mira1

Hallo!
Ich habe glaube ich ein recht einfach zu lösendes Problem.
Gegeben ist die Dgl y' = [mm] x^2 y^2 [/mm] die soll gelöst werden.
Müsste mit Trennung der Veränderlichen gehen. Damit komme ich dann zu der Gleichung [mm] \integral {\bruch{1}{y^2} dy} [/mm] = [mm] \integral {x^2 dx} [/mm]
Ich komme mit dem integrieren der rechten Seite nicht weiter. Kann mit da jemand helfen?
Liebe Grüße


        
Bezug
Lösung einer gDgl: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 17.10.2007
Autor: Martinius

Hallo,

>  Gegeben ist die Dgl y' = [mm]x^2 y^2[/mm] die soll gelöst werden.
>  Müsste mit Trennung der Veränderlichen gehen. Damit komme
> ich dann zu der Gleichung [mm]\integral {\bruch{1}{y^2} dy}[/mm] =
> [mm]\integral {x^2 dx}[/mm]
>  Ich komme mit dem integrieren der
> rechten Seite nicht weiter. Kann mit da jemand helfen?


[mm]\integral \bruch{1}{y^2} dy = \bruch{-1}{y}+C [/mm]

LG, Martinius


Bezug
                
Bezug
Lösung einer gDgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 17.10.2007
Autor: Mira1

Aber y ist doch eine Funktion und nicht nur eine Variable. Ist das egal?

Bezug
                        
Bezug
Lösung einer gDgl: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mi 17.10.2007
Autor: Martinius

Hallo,

> Aber y ist doch eine Funktion und nicht nur eine Variable.
> Ist das egal?

Also ich hab nie Mathe studiert (dazu fehlt mir leider die Phantasie) und kann daher meine Antwort nicht begründen, aber ich denke schon, dass das egal ist. Auf der linken Seite integrierst Du nach y, auf der rechten nach x. Daher ja die Separation der Variablen.

[mm] $\integral \bruch{1}{y^{2}}\, [/mm] dy [mm] =\integral x^{2}\, [/mm] dx $


[mm] $\bruch{-1}{y} =\bruch{1}{3}*x^{3}+C$ [/mm]

$y = [mm] \bruch{-3}{x^{3}+3C}$ [/mm]

$y = [mm] \bruch{-3}{x^{3}+C'}$ [/mm]


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]