www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung einer inhomogenen DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung einer inhomogenen DGL
Lösung einer inhomogenen DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer inhomogenen DGL: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:50 So 09.04.2006
Autor: Jette87

Aufgabe
Bestimmen Sie die Lösung(en) zu folgender DGL:
y'(t) + 4ty(t) -8t = 0

Es gibt ja 2 Schritte, erstmal die Lösung der homogenen DGL zu finden und dann die partikuläre.

Also Lösung der homogenen DGL sind:

y1= [mm] e^{-2t²} [/mm] und y2= [mm] -e^{-2t²} [/mm]

so also muss ich das irgendwie dann weitermachen
(für y1 jetzt erstmal)
Yp(t)= [mm] c(t)e^{-2t²} [/mm] (muss ich doch machen mit dem c... oder)

->  [mm] \bruch{dyp}{dt}= c'(t)e^{-2t²} -4tc(t)e^{-2t²} [/mm] =! [mm] -4tc(t)e^{-2t²}+8t [/mm]
-> [mm] c'(t)e^{-2t²}=8t [/mm]
-> [mm] c'(t)=8te^{2t²} [/mm]
-> c(t)=  [mm] \integral_{}^{}{8te^{2t²}} [/mm]

stimmt das soweit oder nicht? (dann müsste ich ja einfach noch versuchen mit Substituentenregel oder partieller Integration das rauszukriegen...)



        
Bezug
Lösung einer inhomogenen DGL: Gelöst!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 So 09.04.2006
Autor: Jette87

Hat sich auch geklärt, stimmt so!

Bezug
        
Bezug
Lösung einer inhomogenen DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mo 10.04.2006
Autor: mathemaduenn

Hallo Jette87,
Auch wenn Du's schon als gelöst ansiehst seien mir noch 2 Bemerkungen erlaubt

> Bestimmen Sie die Lösung(en) zu folgender DGL:
>  y'(t) + 4ty(t) -8t = 0
>  Es gibt ja 2 Schritte, erstmal die Lösung der homogenen
> DGL zu finden und dann die partikuläre.
>  
> Also Lösung der homogenen DGL sind:
>  
> y1= [mm]e^{-2t²}[/mm] und y2= [mm]-e^{-2t²}[/mm]

Die homogene Lösung ist
[mm] y_h=C*e^{-2t²} [/mm]
Da fallen deine Lösungen zwar drunter aber es gibt noch mehr.  

> so also muss ich das irgendwie dann weitermachen
>  (für y1 jetzt erstmal)
>  Yp(t)= [mm]c(t)e^{-2t²}[/mm] (muss ich doch machen mit dem c...
> oder)
>  
> ->  [mm]\bruch{dyp}{dt}= c'(t)e^{-2t²} -4tc(t)e^{-2t²}[/mm] =!

> [mm]-4tc(t)e^{-2t²}+8t[/mm]
>  -> [mm]c'(t)e^{-2t²}=8t[/mm]

>  -> [mm]c'(t)=8te^{2t²}[/mm]

>  -> c(t)=  [mm]\integral_{}^{}{8te^{2t²}}[/mm]

Ich hab nicht nachgerechnet ob das alles klar geht. Es scheint mir aber für die vorliegende DGL etwas kompliziert. Nach längerem draufschauen hat man imho die Chance [mm] y_p=2 [/mm] als partikuläre Lsg. direkt zu sehen.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]