www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationLösung eines Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Lösung eines Integrals
Lösung eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung eines Integrals: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 02.11.2009
Autor: Kainor

Aufgabe
[mm] \integral_{}^{}{\bruch{1}{\wurzel{-1+cos(x)}} dx}= [/mm] ??? = [mm] \bruch{(2 *ln(Tan[x/4]) *Sin[x/2])}{\wurzel(-1 + Cos[x])} [/mm]

Das Ergebnis kenn ich aber der Weg dort hin ist mir ein Rätsel.

        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> [mm]\integral_{}^{}{\bruch{1}{\wurzel{-1+cos(x)}} dx}=[/mm] ??? =
> [mm]\bruch{(2 *ln(Tan[x/4]) *Sin[x/2])}{\wurzel(-1 + Cos[x])}[/mm]


Das Problem ist, daß der Ausdruck unter der Wurzel [mm]\le 1[/mm] ist.

Stünde hier

[mm]\integral_{}^{}{\bruch{1}{\wurzel{1-cos(x)}} dx}[/mm]

so wäre hiervon

[mm]2 *ln(Tan[x/4])[/mm]

eine Stammfunktion.


>  
> Das Ergebnis kenn ich aber der Weg dort hin ist mir ein
> Rätsel.


Gruss
MathePower

Bezug
                
Bezug
Lösung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 02.11.2009
Autor: Kainor

mMn ist der Ausdruck -1 [mm] \le [/mm] x [mm] \le [/mm] 0
;) ,ja aber es muss ja trotzdem gehen. Das Ergebnis habe ich noch mal abgleitet und vereinfacht und es kommt tatsächlich raus (mit dem PC)

Bezug
                        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> mMn ist der Ausdruck -1 [mm]\le[/mm] x [mm]\le[/mm] 0
> ;) ,ja aber es muss ja trotzdem gehen. Das Ergebnis habe
> ich noch mal abgleitet und vereinfacht und es kommt
> tatsächlich raus (mit dem PC)  


Nun, da hat man sich wohl mit einem Trick beholfen:

[mm]ln(Tan[x/4])*\blue{1}=ln(Tan[x/4])*\blue{\wurzel{2}*\bruch{Sin[x/2]}{\wurzel{1 - Cos[x]}}}[/mm]

Gemäß Additionstheoremen gilt:

[mm]1-\cos\left(x\right)=2*\sin^{2}\left(\bruch{x}{2}\right)[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Lösung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Mo 02.11.2009
Autor: Kainor

Also ich versteh grad nicht wie mir das helfen soll

[mm] ln(Tan[x/4])\cdot{}\blue{1} [/mm] ist ja keine Lösung meine Integrals sondern von

1-cos(x) ... obwohl ich hatte mal ein Ansatz wo ich t=x/2 subst. habe und dann blieb da [mm] \wurzel{-2}=i*\wurzel{2} [/mm] unter der Wurzel stehen da würde ja dann die [mm] \wurzel{2} [/mm] von deinem Ansatz wegfallen, aber das i bleibt

Bezug
                                        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> Also ich versteh grad nicht wie mir das helfen soll


Wendet man das Additionstheoorem

[mm]\cos\left(x\right)=1-2*\sin^{2}\left(\bruch{x}{2}\right)[/mm]

und anschliessend die trigonometrische Substitution

[mm]\tan\left(\bruch{x}{4}\right)=t[/mm]

an, dann kommt man auf die Stammfunktion

[mm]ln(Tan[x/4])[/mm]


>  
> [mm]ln(Tan[x/4])\cdot{}\blue{1}[/mm] ist ja keine Lösung meine
> Integrals sondern von


Beachte, daß [mm]-1+\cos\left(x}\right)=\left(-1\right)*\left(\cos\left(x\right)-1\right)[/mm]

Daher bleibt auch ein "i" im Nenner stehen.


>  
> 1-cos(x) ... obwohl ich hatte mal ein Ansatz wo ich t=x/2
> subst. habe und dann blieb da [mm]\wurzel{-2}=i*\wurzel{2}[/mm]
> unter der Wurzel stehen da würde ja dann die [mm]\wurzel{2}[/mm]
> von deinem Ansatz wegfallen, aber das i bleibt


Das ist richtig.


Gruss
MathePower

Bezug
                                                
Bezug
Lösung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 02.11.2009
Autor: Kainor

Vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]