www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung von GDL berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lösung von GDL berechnen
Lösung von GDL berechnen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von GDL berechnen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:09 Sa 01.05.2010
Autor: TheBozz-mismo

Aufgabe
Berechne die Lösungen von
a) x'(t)=4x(t) + cos(2t)
b) [mm] y'(t)=-y(t)+e^{7t} [/mm]

Hallo! Ich habe mich mal an den beiden Aufgaben versucht. Es wäre nett, wenn einer mal drüberguckt und ob das Ergebnis richtig ist.
Zu b)
1)Lösung des homogen Systems ist [mm] y(t)=ke^{-t} [/mm] mit k [mm] \in \IR [/mm]
2) Variation der Konstante [mm] y(t)=k(t)e^{-t} [/mm]
[mm] y'(t)=k'(t)e^{-t}-k(t)e^{-t} [/mm]
Einsetzen in Gleichung ergibt(nach Kürzen von dem gleichen Ausdruck)
[mm] k'(t)=e^{8t} [/mm]  . Also ist [mm] k(t)=\bruch{1}{8}e^{8t}+c [/mm]
3) Lösung ist dann [mm] y(t)=\bruch{1}{8}e^{7t}+ce^{-t} [/mm]


Zu a)
1) Lösung des homogenen Systems ist [mm] x(t)=ke^{4t} [/mm]
2) Variation der Konstante: [mm] x(t)=k(t)e^{4t} x'(t)=k'(t)e^{4t}+4e^{4t}k(t) [/mm]
Einsetzen ergibt(nach Kürzen) [mm] k'(t)=e^{-4t}cos(2t) [/mm]
Berechne k(t) durch 2 Mal Anwenden von partielle Integration
[mm] k(t)=\bruch{e^{-4t}sin(2t)}{10} [/mm] - [mm] \bruch{e^{-4t}cos(2t)}{5} [/mm] + c
3) Lösung: [mm] x(t)=ce^{4t}+\bruch{sin(2t)}{10} [/mm] - [mm] \bruch{cos(2t)}{5} [/mm]

Sind die Lösungen soweit richtig und die einzelnen Schritte?Wenn was falsch ist, wo genau?
Wenn was falsch ist, kann ich die entsprechenden einzelnen Schritte noch genau posten(wie zum Beispiel Fehler beim Integrieren)

Ich bedanke mich für jede Hilfe

Gruß
TheBozz-mismo

PS:Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Lösung von GDL berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Sa 01.05.2010
Autor: schachuzipus

Hallo TheBozz-mismo,

> Berechne die Lösungen von
>  a) x'(t)=4x(t) + cos(2t)
>  b) [mm]y'(t)=-y(t)+e^{7t}[/mm]
>  Hallo! Ich habe mich mal an den beiden Aufgaben versucht.
> Es wäre nett, wenn einer mal drüberguckt und ob das
> Ergebnis richtig ist.
>  Zu b)
>  1)Lösung des homogen Systems ist [mm]y(t)=ke^{-t}[/mm] mit k [mm]\in \IR[/mm] [ok]
>  
> 2) Variation der Konstante [mm]y(t)=k(t)e^{-t}[/mm]
> [mm]y'(t)=k'(t)e^{-t}-k(t)e^{-t}[/mm]
> Einsetzen in Gleichung ergibt(nach Kürzen von dem gleichen
> Ausdruck)
>  [mm]k'(t)=e^{8t}[/mm]  . Also ist [mm]k(t)=\bruch{1}{8}e^{8t}+c[/mm]
>  3) Lösung ist dann [mm]y(t)=\bruch{1}{8}e^{7t}+ce^{-t}[/mm] [ok]
>  
>
> Zu a)
>  1) Lösung des homogenen Systems ist [mm]x(t)=ke^{4t}[/mm] [ok]
>  2) Variation der Konstante: [mm]x(t)=k(t)e^{4t} x'(t)=k'(t)e^{4t}+4e^{4t}k(t)[/mm]
>  
> Einsetzen ergibt(nach Kürzen) [mm]k'(t)=e^{-4t}cos(2t)[/mm] [ok]
>  Berechne k(t) durch 2 Mal Anwenden von partielle
> Integration
>  [mm]k(t)=\bruch{e^{-4t}sin(2t)}{10}[/mm] - [mm]\bruch{e^{-4t}cos(2t)}{5}[/mm] + c [ok]
>  3) Lösung: [mm]x(t)=ce^{4t}+\bruch{sin(2t)}{10}[/mm] - [mm]\bruch{cos(2t)}{5}[/mm] [ok]
>  
> Sind die Lösungen soweit richtig und die einzelnen
> Schritte?

Jo, alles bestens!

> Wenn was falsch ist, wo genau?
>   Wenn was falsch ist, kann ich die entsprechenden
> einzelnen Schritte noch genau posten(wie zum Beispiel
> Fehler beim Integrieren)
>  
> Ich bedanke mich für jede Hilfe
>  
> Gruß
>  TheBozz-mismo
>  
> PS:Ich habe diese Frage in keinem anderen Forum gestellt


Gruß

schachuzipus

Bezug
                
Bezug
Lösung von GDL berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Sa 01.05.2010
Autor: TheBozz-mismo

Danke...kam mir irgendwie zu einfach vor.

Gruß
TheBozz-mismo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]