www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLösungen, Ungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Lösungen, Ungleichungen
Lösungen, Ungleichungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen, Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Mo 03.11.2008
Autor: nina1

Aufgabe
Ermitteln Sie sämtliche reelle Lösungen x von

a) [mm] \wurzel{x+5} [/mm] = x-1

b) [mm] \bruch{1}{|2x-3|} [/mm] > 5

c) |x+3| [mm] \le [/mm] |x-1| + |x-2|

Hallo,

ich komme bei den 3 Aufgaben nicht ganz weiter. Von ähnlichen Aufgaben, die wir vorher geübt hatten, hatten wir die Aufgaben so gelöst, dass wir durch Analyse der Definitionsmengen, z.B. dass unter der Wurzel kein negativer Wert rauskommen darf usw. ermittelt.

Ich habe jetzt aber eigentlich bei jeder Aufgabe nach x umgestellt, weiß aber nicht ob es nicht auch anders geht und ob das so überhaupt richtig ist.

z.B. für

a) x+5 = [mm] (x-1)^{2} [/mm] => nach 0 umstellen und Einsetzen in Mitternachtsformel => x1= 4 und x2= -1

Ist das jetzt die gesamte reelle Lösungsmenge?

b) hier ist denke ich mal x [mm] \not= [/mm] 1,5.
Und nach Umstellen erhält man ja, dass |2x-3| < [mm] \bruch{1}{5}=> [/mm] |2x| < [mm] \bruch{1}{5}+3 [/mm] => |x< < [mm] \bruch{\bruch{16}{5}}{2} [/mm]
und demnach x < 1,6 sein muss => dadurch muss sich ja x zwischen 1,5 und 1,6 befinden => ]1,5 ; 1,6[ (???)

c) hier habe ich auch einfach nach  aufgelöst und x [mm] \ge [/mm] 6 erhalten.


Vielen Dank schonmal und Grüße.

        
Bezug
Lösungen, Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 03.11.2008
Autor: Steffi21

Hallo,

a)
hier heißt es Achtung, Achtung, Äquivalenzumformungen, quadriert man beide Seiten einer Gleichung, so handelt es sich nicht um eine Äquivalenzumformung, hier hast du Recht. -1 und 4 erfüllen deine quadratische Gleichung, da du quadriert hast, ist auf jeden Fall die Probe in der Ausgangsgleichung nötig,

b)
[mm] x\not=1,5 [/mm] ist korrekt, du kennst die Regel, multipliziert man eine Ungleichung mit einer negativen Zahl (Term), so kehrt sich das Relationszeichen um, wir unterscheiden zwei Fälle:
1.) 2x-3>0, also können wir schreiben |2x-3|=2x-3,
2.) 2x-3<0, also können wir schreiben |2x-3|=-(2x-3),

c)
hier sind mehrere Fallunterscheidungen notwendig, du erhälst [mm] x\le0, x\ge6 [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]