www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLösungen für a bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Lösungen für a bestimmen
Lösungen für a bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen für a bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:59 Mi 13.09.2006
Autor: FlorianJ

Aufgabe
Für welche Werte [mm] a\in\IR [/mm] besitzt folgendes System
i) genau eine Lösung, ii) keine Lösung iii) unendlich viele Lösungen ?

[mm] ax_1 +x_2+x_3 [/mm] = [mm] a^2 [/mm]
[mm] x_1 +ax_2+x_3 [/mm] = a
[mm] x_1 [/mm]  + [mm] x_2 [/mm] + [mm] ax_3 [/mm] = 1

Hallo zusammen!

Mit dem oben genannten Aufgabentyp komme ich noch nicht so recht klar.
Zunächst sollte man sich also veranschaulichen, wann i, ii oder iii gilt.

i) genau eine Lösung existiert, wenn man mit gauß auf ein gestaffeltes System kommt, mit dem man die Werte berechnen kann.


ii) eine Lösung exisitiert, wenn in einer Zeile ein Wert [mm] z\in\IR \not= [/mm] 0steht, und als Lösung 0 angegeben ist. zB 0 1 2 3 | 0

iii) unendlich viele Lösungen existieren, wenn eine oder mehr Zeile(n) gänzlich verschwindet(n). hier nimmt man dann für [mm] x_n [/mm] ein  [mm] \lambda [/mm] an...


Ich hoffe das ist soweit richtig.
Ausgehend von diesem Wissen, würde ich daher nun das gestaffelte System berechnen. Bevor ich damit starte fällt mir natürlich noch auf, dass es sich um eine symmetrische Matrix handelt - weiß aber leider nichts damit anzufangen.
Also:

a    1    1    [mm] a^2 [/mm]
1    a    1    a
1    1    a    1

[mm] \vmat{ a & 1 & 1 & a^2 \\ 0 & \bruch{a^2+1}{a} & \bruch{a-1}{a} & 0 \\ 0 & \bruch{a-1}{a} & \bruch{a^2+1}{a} & 1-a} [/mm]

Da es mir hier schon irgendwie merkwürdig wird, ist die Frage, wie man es eleganter lösen kann.

Vielen Dank schonmal!

Bis dahin, Flo

Habe die Frage nur hier gestellt!

        
Bezug
Lösungen für a bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mi 13.09.2006
Autor: DaMenge

Hi,


> i) genau eine Lösung existiert, wenn man mit gauß auf ein
> gestaffeltes System kommt, mit dem man die Werte berechnen
> kann.

richtig - aber ein bischen unsauber ausgedrückt

>  
>
> ii) eine Lösung exisitiert, wenn in einer Zeile ein Wert
> [mm]z\in\IR \not=[/mm] 0steht, und als Lösung 0 angegeben ist. zB 0
> 1 2 3 | 0


du meinst KEINE Lösung, oder?
und nein beispiel : 0 1 -1|0 hat durchaus ein lösung (wenn [mm] $x_2 [/mm] = [mm] x_3$) [/mm]
Keine lösung existiert, wenn im Variablen-teil überall eine 0 steht aber im Lösungsteil nicht, also : 000|5 oder so, denn egal wie man die Variablen [mm] x_i [/mm] wählt steht auf der linken Seite der Gleichung immer eine 0, aber rechts nicht

>  
> iii) unendlich viele Lösungen existieren, wenn eine oder
> mehr Zeile(n) gänzlich verschwindet(n). hier nimmt man dann
> für [mm]x_n[/mm] ein  [mm]\lambda[/mm] an...
>  


ja komplette Nullzeile in der erweiterten Matrix



>  
> a    1    1    [mm]a^2[/mm]
>  1    a    1    a
>  1    1    a    1
>  

also ich würde erstmal die letzte und die erste Zeile vertauschen - das amcht einiges einfacher...


> Da es mir hier schon irgendwie merkwürdig wird, ist die
> Frage, wie man es eleganter lösen kann.

Du musst allerdings aufpassen : wenn du durch a teilst, gehst du schon davon aus, dass a nicht 0 ist, also musst du diesen Fall gesondert betrachten !!
Außerdem kannst du deine Zeilen noch mit einer beliebigen reellen Zahl ungleich 0 multiplizieren (z.B. mit a, wenn du das gesondert betrachtet hast)

Ansonsten heißt es wohl : einfach weiter machen bis zum bitteren Schluß
:-)

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]