www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösungen von DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lösungen von DGL
Lösungen von DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen von DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Di 23.01.2007
Autor: extral

Aufgabe
Mich interresiert wieso die Differentialgleichung
y''+y=0

folgende Lösungen besitz:

y1(x)=cos(x)
y2(x)=sin(x)

So stehts es nämlich im Mathe3 Skript.

Ich bekomme da irgentwie sowas raus:

[mm] y1(x)=e^{ix} [/mm]
[mm] y2(x)=e^{-ix} [/mm]

und das wäre dann nach Euler

y1(x)=cos(x)+i*sin(x)
y2(x)=cos(x)-i*sin(x)

Bitte Hilfe, komme irgentwie nicht weiter damit!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungen von DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Di 23.01.2007
Autor: leduart

Hallo
> Mich interresiert wieso die Differentialgleichung
>  y''+y=0
>  
> folgende Lösungen besitz:
>  
> y1(x)=cos(x)
>  y2(x)=sin(x)
>  So stehts es nämlich im Mathe3 Skript.

Es fehlt: und alle dazugehoerigen Linearkombinationen!
Wenn du nur reelle Loesungen suchst, findest du die, Nachweis durch differenzieren und einsetzen.
2. jede Linearkombination von Loesungen einer linearen DGl. ist wieder Loesung.
hier kannst du aus deinen Loesungen die reellen kombinieren, wenn du komplexe Loesungen zulaesst aus sin und cos deine loesungen.
3.Die Loesungen bilden einen 2d Vektorraum, als Basis kannst du deine Loesg nehmen, oder eben die beiden anderen,
oder noch andere Basen.
Gruss leduart

> Ich bekomme da irgentwie sowas raus:
>  
> [mm]y1(x)=e^{ix}[/mm]
>  [mm]y2(x)=e^{-ix}[/mm]

wieder, und alle Linearkomb.

> und das wäre dann nach Euler
>  
> y1(x)=cos(x)+i*sin(x)
>  y2(x)=cos(x)-i*sin(x)
>  

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]