www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenLösungsmenge einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Lösungsmenge einer Funktion
Lösungsmenge einer Funktion < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Di 20.04.2010
Autor: bOernY

Aufgabe
Von der Gleichung [mm] $x^4-2x^3+x^2+2x-2=0$ [/mm] ist [mm] $x_1=1-i$ [/mm] als Lösung bekannt. Berechnen Sie die übrigen Lösungen.

Da wir das Thema neu anfangen haben, hat uns unser Prof. direkt ins kalte Wasser geworfen.
Leider weiß ich deswegen nichteinmal wie ich ansetzen soll.

        
Bezug
Lösungsmenge einer Funktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 22:53 Di 20.04.2010
Autor: Loddar

Hallo boerny!


Wenn [mm] $x_1 [/mm] \ = \ 1-i$ eine Lösung der Gleichung ist, gilt dies grundsätzlich auch für das entsprechende Komplex-Konjugierte: [mm] $x_2 [/mm] \ = \ [mm] \overline{x_1} [/mm] \ = \ [mm] \overline{1-i} [/mm] \ = \ 1+i$ .

Damit kennst Du bereits zwei Linearfaktoren, in welche der Funktionsterm aufgespalten werden kann:
[mm] $$(x-x_1)*(x-x_2) [/mm] \ = \ [x-(1-i)]*[x-(1+i)] \ = \ [x-1+i]*[x-1-i] \ = \ [mm] (x-1)^2-i^2 [/mm] \ = \ [mm] (x-1)^2+1 [/mm] \ = \ [mm] x^2-2x+2$$ [/mm]
Führe nun folgende MBPolynomdivision durch:
[mm] $$\left(x^4-2x^3+x^2+2x-2\right) [/mm] \ : [mm] \left(x^2-2x+2\right) [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]