www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösungsverhalten LGS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Lösungsverhalten LGS
Lösungsverhalten LGS < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsverhalten LGS: Rückfrage,Idee,Hilfe,Tipp
Status: (Frage) beantwortet Status 
Datum: 12:56 Di 17.07.2018
Autor: Dom_89

Hallo,

ich habe eine Frage zum Lösungsverhalten von Lineare Gleichungssystemen.

Bei einer 3x3 Matrix möchte ich ja [mm] \pmat{ 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 9} [/mm] erreichen, um dieser zu lösen (Nullen unter der Hauptdiagonalen)

Bei einer 2x2 Matrix ist es [mm] \pmat{ 1 & 2 \\ 0 & 0 } [/mm]

Und bei einer 3x2 [mm] \pmat{ 1 & 2 & 3 \\ 0 & 5 & 6} [/mm]

Ich verstehe nicht, wie sich dies ergibt bzw. ob es hierfür eine passende Regel gibt!?

Könnt ihr mir da weiterhelfen?

Danke

        
Bezug
Lösungsverhalten LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Di 17.07.2018
Autor: angela.h.b.


> Hallo,

>

> ich habe eine Frage zum Lösungsverhalten von Lineare
> Gleichungssystemen.

>

> Bei einer 3x3 Matrix möchte ich ja [mm]\pmat{ 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 9}[/mm]
> erreichen, um dieser zu lösen (Nullen unter der
> Hauptdiagonalen)

>

> Bei einer 2x2 Matrix ist es [mm]\pmat{ 1 & 2 \\ 0 & 0 }[/mm]

>

> Und bei einer 3x2 [mm]\pmat{ 1 & 2 & 3 \\ 0 & 5 & 6}[/mm]

>

> Ich verstehe nicht, wie sich dies ergibt bzw. ob es
> hierfür eine passende Regel gibt!?

Hallo,

um ein Lineares Gleichungssystem A*x=b zu lösen,
stellt man die Koeffizientenmatrix (A|b) auf und bringt diese durch Zeilenumformungen auf Zeilenstufenform.

Ich denke, "Zeilenstufenform" ist die Info, die Dir fehlt.

Was eine Zeilenstufenform ist, ist z.B. []hier erklärt.


Vllt. postest Du mal ein LGS, welches Du lösen möchtest, im Idealfall mit Deinem eigenen Lösungsversuch.

LG Angela




>

> Könnt ihr mir da weiterhelfen?

>

> Danke


Bezug
                
Bezug
Lösungsverhalten LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Fr 20.07.2018
Autor: Dom_89

Vielen Dank für die schnelle Hilfe Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]