www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logarithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Logarithmen
Logarithmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Di 15.08.2006
Autor: daniel87

Aufgabe
[mm] \wurzel16^{2x-2}=2^{3x-2} [/mm]

hi.
kann mir jemand diese aufgabe lösen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Di 15.08.2006
Autor: Event_Horizon

Nun, das geht auch ohne Logarithmen!

Erstmal heißt es sicherlich [mm] $\wurzel{16^{2x-2}}=2^{3x-2} [/mm] $ oder?

[mm] \wurzel{x} [/mm] läßt sich ja auch als [mm] x^{\bruch{1}{2}} [/mm] schreiben. Also

[mm] $({16^{2x-2}})^{\bruch{1}{2}}=2^{3x-2} [/mm] $

Außerdem ist [mm] $16=2^4$, [/mm] also

[mm] $({(2^4)^{2x-2}})^{\bruch{1}{2}}=2^{3x-2} [/mm] $

Und nun weißt du sicherlich, daß Potenzen potenziert werden, indem die Exponenten multipliziert werden. Also mußt du die ganzen "Hochzahlen" links multiplizieren. Du erhälst

[mm] $({2^{4x-4}})=2^{3x-2} [/mm] $

Nun kannst du den Zweierlogarithmus anwenden. Oder du sagst einfach, daß die beiden Exponenten gleich sein müssen, damit das stimmt:

$4x-4=3x-2$

$x=2$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]