www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logarithmen Aufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Logarithmen Aufgaben
Logarithmen Aufgaben < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen Aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 22.01.2008
Autor: hase-hh

Aufgabe
Bestimme die Lösungen folgender Aufgaben

a) [mm] x^{lg x} [/mm] = 1,21

b) gelöst.

c) [mm] \bruch{1}{lg x} [/mm] + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{2}* [/mm] lg x

Moin,

würde mich freuen, wenn mir jemand beim Lösen der o.g. Aufgaben helfen kann... :-)

zu a)

[mm] x^{lg x} [/mm] = 1,21  

gut, ich könnte die gleichung logarithmieren, aber bringt's das???

zu c)

[mm] \bruch{1}{lg x} [/mm] + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{2}* [/mm] lg x

ist nicht [mm] \bruch{1}{lg x} [/mm] = - lg x  ?

keine idee!!

Danke & Gruß
Wolfgang






        
Bezug
Logarithmen Aufgaben: zu Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 21:00 Di 22.01.2008
Autor: Loddar

Hallo Wolfgang!


> ist nicht [mm]\bruch{1}{lg x}[/mm] = - lg x  ?

[notok] Nein. Das verwechselt Du wohl mit [mm] $\log\left(\bruch{1}{x}\right) [/mm] \ = \ [mm] -\log(x)$ [/mm] .

Multipliziere Deine Gleichung mit [mm] $\lg(x)$ [/mm] und substituiere anschließend $z \ := \ [mm] \lg(x)$ [/mm] .

Damit erhältst Du eine quadratische Gleichung, welche Du bestimmt lösen kannst.


Gruß
Loddar


Bezug
        
Bezug
Logarithmen Aufgaben: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 21:07 Di 22.01.2008
Autor: Loddar

Hallo Wolfgang!


Lgarithmieren ist doch ein guter Ansatz. Und nach Anwendung eines MBLogarithmusgesetzes steht dann da:
[mm] $$\lg\left[x^{\lg(x)}\right] [/mm] \ = \ [mm] \lg(x)*\lg(x) [/mm] \ = \ [mm] [\lg(x)]^2 [/mm] \ = \ [mm] \lg(1.21)$$ [/mm]
Nun also die Wurzel ziehen ...


Gruß
Loddar


Bezug
                
Bezug
Logarithmen Aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 22.01.2008
Autor: hase-hh

Moin Loddar,

danke!

für a) habe ich raus:


[mm] x^{lg x} [/mm] = 1,21

[mm] lg*[x^{lg x}] [/mm] = lg 1,21

(lg x) * (lg x) = 0,083

lg x = [mm] \pm [/mm] 0,2877


[mm] x_1 [/mm] = [mm] 10^{0,2877} [/mm] = 1,94

[mm] x_2 [/mm] = [mm] 10^{-0,2877} [/mm] = 0,516.


für c)

[mm] \bruch{1}{lg x} [/mm] + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{2}* [/mm] lg x  


1 + [mm] \bruch{1}{2}* [/mm] lg x = [mm] \bruch{1}{2}*(lg x)^2 [/mm]

z = lg x


[mm] z^2 [/mm] - z -2 = 0

[mm] z_{1/2} [/mm] = 0,5 [mm] \pm \wurzel{2,25} [/mm]

[mm] z_1 [/mm] = 2     =>  lg [mm] x_1 [/mm] = 2  ;  [mm] 10^2 [/mm] = 100 = [mm] x_1 [/mm]

[mm] z_2 [/mm] = -1    =>  lg [mm] x_2 [/mm] = -1 ; [mm] 10^{-1} [/mm] = 0,1 = [mm] x_2 [/mm]


Gruß
Wolfgang









Bezug
                        
Bezug
Logarithmen Aufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Mi 23.01.2008
Autor: Analytiker

Hi Wolfgang,

> [mm]x^{lg x}[/mm] = 1,21

> [mm]x_1[/mm] = [mm]10^{0,2877}[/mm] = 1,94

> [mm]x_2[/mm] = [mm]10^{-0,2877}[/mm] = 0,516.

[ok] -> Die Probe beweist dein korrektes Ergebnis:

[mm] 1,94^{lg 1,94} \approx [/mm] 1,21 -> wahre Aussage! (1,94 ist gerundet)

[mm] 0,516^{lg 0,516} \approx [/mm] 1,21 -> wahre Aussage! (0,516 ist gerundet)


> [mm]\bruch{1}{lg x}[/mm] + [mm]\bruch{1}{2}[/mm] = [mm]\bruch{1}{2}*[/mm] lg x  

> [mm]z_1[/mm] = 2     =>  lg [mm]x_1[/mm] = 2  ;  [mm]10^2[/mm] = 100 = [mm]x_1[/mm]

> [mm]z_2[/mm] = -1    =>  lg [mm]x_2[/mm] = -1 ; [mm]10^{-1}[/mm] = 0,1 = [mm]x_2[/mm]

[ok] -> Die Probe beweist auch hier, das du richtig liegst:

[mm] \bruch{1}{lg 100} [/mm] + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{2} [/mm] * lg 100 -> wahre Aussage!

[mm] \bruch{1}{lg 0,1} [/mm] + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{2} [/mm] * lg 0,1 -> wahre Aussage!

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]