www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenLogarithmus: glm. Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Logarithmus: glm. Konvergenz
Logarithmus: glm. Konvergenz < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: glm. Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 08.12.2014
Autor: Fenistil

Aufgabe
Hallo zusammen,

sei [mm]S_n(z,z)=\sum_{j=0}^n|z|^{2j}[/mm].
Dann folgt ja aus der endlichen geometrischen Reihe für [mm]|z| \leq 1[/mm], dass [mm]S_n(z,z)=\frac{1-|z|^{2n+2}}{1-|z|^2}[/mm].
Zeige, dass [mm]\frac{1}{2n}\log S_n(z,z)\rightarrow \log^+|z|[/mm] lokal gleichmäßig auf [mm]\mathbb{C}[/mm].

So direkt sehe ich das nicht. Ich hätte jetzt die Idee, dass dies durch umformen oder mit der Reihenentwicklung des Logarithmus folgt.
Bei Wikipedia habe ich folgende Reihenentwicklung gefunden:
[mm]\log(1-z)=-\sum_{k=1}^\infty \frac{z^k}{k} \qquad |z|\le 1 \, , \, z\neq 1[/mm].
Wenn man für z nun [mm]|z|^{2n+2}[/mm] bzw [mm]|z|^2[/mm] einsetzt und den Bruch mit den Logarithmusgesetzen als Differenz schreibt, ergibt sich bei mir:
[mm]-\sum_{k=1}^\infty\frac{|z|^{(2n+2)k}}{k}+\sum_{k=1}^\infty\frac{|z|^{2k}}{k}[/mm].
Dies ist nun eine Art Teleskopsumme, wo sich Teile wegkürzen. Da n aber nicht gegeben ist, weiß ich nicht, wie ich nun allgemein begründen kann, dass dies gegen [mm]\log^+|z|[/mm] konvergiert.
Hat jemand eine Idee??

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt, da es sehr wichtig ist:
http://www.matheboard.de/thread.php?postid=1956413#post1956413
http://www.matheplanet.com/

        
Bezug
Logarithmus: glm. Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mo 08.12.2014
Autor: fred97


> Hallo zusammen,
>  
> sei [mm]S_n(z,z)=\sum_{j=0}^n|z|^{2j}[/mm].
>  Dann folgt ja aus der endlichen geometrischen Reihe für
> [mm]|z| \leq 1[/mm], dass [mm]S_n(z,z)=\frac{1-|z|^{2n+2}}{1-|z|^2}[/mm].

Achtung ! Das gilt nur für |z| [mm] \ne [/mm] 1 !

Für |z|=1 ist [mm] S_n(z,z)=n+1. [/mm]

FRED


>  Zeige, dass [mm]\frac{1}{2n}\log S_n(z,z)\rightarrow \log^+|z|[/mm]
> lokal gleichmäßig auf [mm]\mathbb{C}[/mm].
>  So direkt sehe ich das nicht. Ich hätte jetzt die Idee,
> dass dies durch umformen oder mit der Reihenentwicklung des
> Logarithmus folgt.
>  Bei Wikipedia habe ich folgende Reihenentwicklung
> gefunden:
>  [mm]\log(1-z)=-\sum_{k=1}^\infty \frac{z^k}{k} \qquad |z|\le 1 \, , \, z\neq 1[/mm].
>  
> Wenn man für z nun [mm]|z|^{2n+2}[/mm] bzw [mm]|z|^2[/mm] einsetzt und den
> Bruch mit den Logarithmusgesetzen als Differenz schreibt,
> ergibt sich bei mir:
>  
> [mm]-\sum_{k=1}^\infty\frac{|z|^{(2n+2)k}}{k}+\sum_{k=1}^\infty\frac{|z|^{2k}}{k}[/mm].
>  Dies ist nun eine Art Teleskopsumme, wo sich Teile
> wegkürzen. Da n aber nicht gegeben ist, weiß ich nicht,
> wie ich nun allgemein begründen kann, dass dies gegen
> [mm]\log^+|z|[/mm] konvergiert.
>  Hat jemand eine Idee??
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt, da es sehr wichtig ist:
>  
> http://www.matheboard.de/thread.php?postid=1956413#post1956413
>  http://www.matheplanet.com/


Bezug
                
Bezug
Logarithmus: glm. Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:09 Mo 08.12.2014
Autor: Fenistil

Ja, das habe ich dann explizit behandelt, dann ist der Limes von [mm]\frac{1}{2n}\log(n+1)=0[/mm].
Jetzt brauche ich noch, dass sich für [mm]|z|<1[/mm] Null und sonst [mm]log|z|[/mm] ergibt..

Bezug
                        
Bezug
Logarithmus: glm. Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 10.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]