www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraLokalisierung / Inverse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Lokalisierung / Inverse
Lokalisierung / Inverse < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokalisierung / Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Sa 20.03.2010
Autor: cantor

Hallo zusammen,

ich habe eine - wahrscheinlich sehr simple - Frage:

Es geht um Lokalisierung. Man nehme also einen Ring $A$ und eine multiplikativ abgeschlossene Teilmenge $S$ und definiere die Lokalisierung [mm] $S^{-1} [/mm] A$ standardmäßig.

Meine Frage:
1) Wie zeigt man, dass [mm] $\bruch{s}{1} \in S^{-1} [/mm] A$ mit $s [mm] \in [/mm] S$ invertierbar ist?
2) Gilt allgemein $ [mm] \bruch{x}{y} \in S^{-1} [/mm] A$ invertierbar [mm] $\gdw [/mm] y [mm] \in [/mm] S$ ? Warum?

Ich danke Euch vielmals,

Liebe Grüße
cantor

        
Bezug
Lokalisierung / Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Sa 20.03.2010
Autor: SEcki


> 1) Wie zeigt man, dass [mm]\bruch{s}{1} \in S^{-1} A[/mm] mit [mm]s \in S[/mm]
> invertierbar ist?

Es gibt doch ein "offensichtliches" Inverses, nämlich [mm]\bruch{1}{s}[/mm]! Jetzt multiplizieren und zeigen, dass [mm]\bruch{s}{s}=\bruch{1}{1}[/m] ist. S^{-1} A[/mm]

>  2) Gilt allgemein [mm]\bruch{x}{y} \in S^{-1} A[/mm] invertierbar
> [mm]\gdw y \in S[/mm] ? Warum?

Nun ja, zum einen sind die Elemente dort einfach so definiert, dass [m]y\in S[/m] ist, oder meinst du hier einfach Elemente, die in [mm]S^{-1} A[/mm] invers sind? Nun ja, falls das Element schon vor der Lokalisierung in A inv.bar war, ist es auch dort, muss aber nicht in S liegen, zB -1 wenn man [m]\IZ[/m] bzgl. der geraden Zahlen lokalisiert.

SEcki

Bezug
                
Bezug
Lokalisierung / Inverse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Do 01.04.2010
Autor: cantor

Hi Secki,

danke für deine Antwort. Manchmal sieht man bekanntlich den Wald vor lauter Bäumen nicht.

Grüße
cantor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]