www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikLotto 6 aus 49
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Lotto 6 aus 49
Lotto 6 aus 49 < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotto 6 aus 49: Zusatzzahlproblem beim Lotto
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 11.06.2008
Autor: darchr

Hi,

wenn ich ausrechnen will, wie hoch die Chance ist, 5 Richtige im Lotto zu kriegen, gehe ich doch wie folgt vor:

P(5R) = [mm] (\vektor{6 \\ 5} [/mm] * [mm] \vektor{43 \\ 1}) [/mm] / [mm] \vektor{49 \\ 6} [/mm]

Wir haben es in der Schule aber irgendwie noch so gemacht, dass wir vom Zähler 6 subtrahiert haben, weil theoretisch auch die Zusatzzahl dabei sein könnte - das habe ich aber nicht verstanden, warum gerade 6 und warum muss man das überhaupt abziehen?

Wird die Zusatzzahl denn extra gezogen, also gibt es dann [mm] \vektor{49 \\ 7} [/mm] ?

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lotto 6 aus 49: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Mi 11.06.2008
Autor: darchr

Ich habe die Frage jetzt noch in einem anderen Forum (uni-protokolle) geschrieben?


Bezug
        
Bezug
Lotto 6 aus 49: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 11.06.2008
Autor: Blech


> Hi,
>  
> wenn ich ausrechnen will, wie hoch die Chance ist, 5
> Richtige im Lotto zu kriegen, gehe ich doch wie folgt vor:
>  
> P(5R) = [mm](\vektor{6 \\ 5}[/mm] * [mm]\vektor{43 \\ 1})[/mm] / [mm]\vektor{49 \\ 6}[/mm]
>  

Ja.

> Wir haben es in der Schule aber irgendwie noch so gemacht,
> dass wir vom Zähler 6 subtrahiert haben, weil theoretisch
> auch die Zusatzzahl dabei sein könnte - das habe ich aber
> nicht verstanden, warum gerade 6 und warum muss man das
> überhaupt abziehen?

Das klingt reichlich seltsam.

  

> Wird die Zusatzzahl denn extra gezogen, also gibt es dann
> [mm]\vektor{49 \\ 7}[/mm] ?

Ja und Nein, würd ich sagen. Es werden auf jeden Fall 7 gezogen, aber ob Du das dann so hinschreibst, hängt von Deiner Sichtweise ab:

Nein:
Mein erster Ansatz wäre von der Logik her:
es wurden 7 Zahlen gezogen, jetzt überlegen wir uns, wieviele Möglichkeiten es gab, den Schein richtig auszufüllen, geteilt durch die Gesamtzahl der Möglichkeiten, ihn auszufüllen:

Richtige Möglichkeiten: Wir wählen uns 5 aus den 7 Zahlen [mm] (${7\choose 5}$) [/mm] und kreuzen sie an, und dann noch eine aus den restlichen 42 [mm] (${42\choose 1}$). [/mm]

Alle: Wir kreuzen 6 aus 49 an.

d.h.: [mm] $\frac{{7\choose 5}*{42\choose 1}}{{49\choose 6}}$ [/mm]
  

Ja:
Jetzt drehen wir die Logik um. Wir haben 6 Zahlen vorgegeben und ziehen jetzt 7 Kugeln.

Richtige Möglichkeiten: Wir ziehen 5 aus den 6 Kugeln [mm] (${6\choose 5}$) [/mm] und 2 aus den restlichen 43 [mm] (${43\choose 2}$). [/mm]

Alle Möglichkeiten: Wir ziehen 7 aus 49.

d.h. [mm] $\frac{{6\choose 5}*{43\choose 2}}{{49\choose 7}}$ [/mm]



Wenn ich mich jetzt nicht vertan habe, sollte in beiden Fällen das gleiche rauskommen
=)

Es gibt fast immer mehrere Ansätze. Versuch einfach, Dir logisch zu überlegen, was Du tust, und das dann Schritt für Schritt in Formeln zu gießen.

ciao
Stefan

Bezug
        
Bezug
Lotto 6 aus 49: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mi 11.06.2008
Autor: rabilein1

Meine Antwort sieht so aus - zunächst einmal ohne Berücksichtigung der Zusatzzahl:

[mm] \bruch{6}{49}*\bruch{5}{48}*\bruch{4}{47}*\bruch{3}{46}*\bruch{2}{46}*\bruch{43}{44}*6 [/mm]

Das ist eine Chance von 1:54.200

Begründung:
Für die erste Richtige hast du 6 Zahlen von 49 zur Auswahl...
Für die Falsche hast du am Ende 43 Zahlen von 44 zur Auswahl...
Die Mal 6 bedeutet: Es ist egal, an welcher Stelle die Falsche gezogen wird


Falls die Zusatzzahl mit berücksichtigt werden soll, dann wäre es [mm] \bruch{42}{44} [/mm] anstatt  [mm] \bruch{43}{44}, [/mm]
Weil: Auch die Zusatzzahl wäre eine Richtige, die man nicht ziehen darf

Die Chance wäre dann 1:55.491



Bezug
                
Bezug
Lotto 6 aus 49: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:02 Do 12.06.2008
Autor: darchr

Hier nochmal ein konkretes Beispiel bzgl. der Zusatzzahl (so wie wir es gemacht haben)

Lotto - 6 aus 42 (!)

5 Richtige ohne Zusatzzahl

[mm] \vektor{6 \\ 5} [/mm] * [mm] \vektor{36 \\ 1} [/mm] - 6 / [mm] \vektor{42 \\ 6} [/mm]

Jetzt eine Aufgabe, wo ich nur das Ergebnis habe:

4 Richtige ohne Zusatzzahl

[mm] \vektor{6 \\ 4} [/mm] * [mm] \vektor{36 \\ 2} [/mm] / [mm] \vektor{42 \\ 6} [/mm]

Rauskommen soll: 8925 / 5245786

Auf den Nenner komme ich ja, aber ich weiß jetzt nicht, was ich am Zähler noch ändern muss!

Bezug
                        
Bezug
Lotto 6 aus 49: Antwort
Status: (Antwort) fertig Status 
Datum: 07:33 Fr 13.06.2008
Autor: rabilein1


> Jetzt eine Aufgabe, wo ich nur das Ergebnis habe:
>  
> 4 Richtige ohne Zusatzzahl
>  
> [mm]\vektor{6 \\ 4}[/mm] * [mm]\vektor{36 \\ 2}[/mm] / [mm]\vektor{42 \\ 6}[/mm]
>
> Rauskommen soll: 8925 / 5245786


Soviel vorweg: Das Ergebnis ist richtig

Ich habe zwar eine andere Methode, wie ich darauf komme, aber der Weg spielt auch keine Rolle.

Ich habe gerechnet:

[mm] \bruch{6}{42}*\bruch{5}{41}*\bruch{4}{40}*\bruch{3}{39}*\bruch{35}{38}*\bruch{34}{37}*\bruch{6*5}{2} [/mm] = 0.00170 = 1:587.76

Grund: Zunächst einmal tue ich so, als müsste ich mit den vier ersten Ziehungen jeweils eine Richtige haben und mit den beiden letzten Ziehungen jeweils eine Falsche (die Zusatzzahl darf ich auch nicht ziehen).

Mit [mm] \bruch{6*5}{2} [/mm] multipliziere ich, weil es egal ist, an welcher Stelle die Falschen gezogen werden.

Bezug
                                
Bezug
Lotto 6 aus 49: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:42 Fr 13.06.2008
Autor: rabilein1

Ich vermute mal, dein [mm]\vektor{36 \\ 2}[/mm] stimmt nicht. Denn das ergibt nicht mein  [mm] \bruch{35}{38}*\bruch{34}{37} [/mm]

Alle anderen Positionen stimmen überein.

Und das Endergebnis, was du schreibst, stimmt mit meinem Ergebnis überein.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]