www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikLottospiel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Lottospiel
Lottospiel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lottospiel: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:02 Sa 05.01.2013
Autor: ahnungsloser86

Aufgabe
Ein Lottospiel besteht aus einer Ziehung von 3 Kugeln ohne Zurücklegen aus einer Urne mit 20 fortlaufend nummerierten Kugeln.

i) Geben Sie einen geeigneten Wahrscheinlichkeitsraum zur Modellierung einer Ziehung an.

ii) Ein Spieler nennt vor der Ziehung die Zahlen von 3 Kugeln. Wie groß ist
die W-keit, dass alle von dem Spieler genannten Kugeln in einer Ziehung
gezogen werden?

iii) Wie groß ist die W-keit, dass der Spieler genau 2 richtige Kugeln rät?


i) und ii) sind soweit klar. aber bei iii) unterscheidet sich meine lösung leider von der musterlösung. vielleicht wisst ihr ja wo mein denkfehler liegt.

die W-Keit die ersten beiden aber nicht die dritte zu erraten ist:

1/20*1/19*17/18

die W-Keit die erste und dritte aber nicht die zweite zu erraten ist:
1/20*18/19*1/18

die W-Keit die zweite und dritte aber nicht die erste zu erraten ist:

19/20*1/19*1/18

also komme ich insgesamt auf P(k=2)=(17+18+19)/(20*19*18)
das ergebnis der musterlösung ist aber P(k=2)=3*17*3!/(20*19*18)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lottospiel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Sa 05.01.2013
Autor: abakus


> Ein Lottospiel besteht aus einer Ziehung von 3 Kugeln ohne
> Zurücklegen aus einer Urne mit 20 fortlaufend nummerierten
> Kugeln.
>  
> i) Geben Sie einen geeigneten Wahrscheinlichkeitsraum zur
> Modellierung einer Ziehung an.
>  
> ii) Ein Spieler nennt vor der Ziehung die Zahlen von 3
> Kugeln. Wie groß ist
>  die W-keit, dass alle von dem Spieler genannten Kugeln in
> einer Ziehung
>  gezogen werden?
>  
> iii) Wie groß ist die W-keit, dass der Spieler genau 2
> richtige Kugeln rät?
>  
> i) und ii) sind soweit klar. aber bei iii) unterscheidet
> sich meine lösung leider von der musterlösung. vielleicht
> wisst ihr ja wo mein denkfehler liegt.
>  
> die W-Keit die ersten beiden aber nicht die dritte zu
> erraten ist:
>  
> 1/20*1/19*17/18

[ok]

>  
> die W-Keit die erste und dritte aber nicht die zweite zu
> erraten ist:
>  1/20*18/19*1/18

Im zweiten Bruch muss es 17/19 lauten.

>  
> die W-Keit die zweite und dritte aber nicht die erste zu
> erraten ist:
>  
> 19/20*1/19*1/18

Im ersten Bruch dürfen es nur 17/20 sein.
Gruß Abakus

>  
> also komme ich insgesamt auf P(k=2)=(17+18+19)/(20*19*18)
>  das ergebnis der musterlösung ist aber
> P(k=2)=3*17*3!/(20*19*18)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]