www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisLp-Räume und abgeschlossenheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Lp-Räume und abgeschlossenheit
Lp-Räume und abgeschlossenheit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lp-Räume und abgeschlossenheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 03.07.2010
Autor: Snarfu

Aufgabe
Sei [mm] 1\leq p a) Zeigen sie, dass [mm] \{f\in L^p (\Omega) \cap L^q (\Omega ):||f||_q\leq1\} [/mm] abgeschlossen in [mm] L^p(\Omega) [/mm] ist.
b) Sei [mm] f_n \in L^p (\Omega) \cap L^q (\Omega) [/mm] und f [mm] \in L^p (\Omega). [/mm] Es gelte [mm] f_n \to [/mm] f in [mm] L^p (\Omega) [/mm] mit [mm] sup_n ||f_n||_q \leq [/mm] C und p [mm] \leq [/mm] r < q. Man zeige dass f [mm] \in L^r (\Omega) [/mm] und [mm] f_n \to [/mm] f in [mm] L^r (\Omega). [/mm]

Ich habe leider keine Ahnung wie ich das anfangen soll und wäre in beiden Fällen für Hilfe super dankbar. (Vermutlich hat die Lösung etwas mit der Interpolationsungleichung zu tun)

Vielen Dank und Liebe Grüße

        
Bezug
Lp-Räume und abgeschlossenheit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Sa 03.07.2010
Autor: Gonozal_IX

Huhu,


erstmal für dich vorweg: Was ist denn [mm] L^p [/mm] ?
Was bedeutet Konvergenz in [mm] L^p [/mm] ?
Wann ist ein Raum abgeschlossen?

Welche Beziehung besteht zwischen [mm] $L^p$ [/mm] und [mm] $L^q$ [/mm] wenn $1 [mm] \le [/mm] p < q$
Wie kannst du die Aufgaben dann vereinfachen?

Soviele Sachen, die man schon hätte zusammentragen können und ich hab noch keinen einzigen Ansatz von dir dazu gesehen.
Schade eigentlich.

MFG;
Gono.


Bezug
                
Bezug
Lp-Räume und abgeschlossenheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Sa 03.07.2010
Autor: Snarfu

Danke für die Antwort!
Nun, soweit ich weiß ist [mm] L^p (\Omega) [/mm] der Raum der Funktionen für die [mm] |f|^p [/mm] auf [mm] \Omega [/mm] integrierbar ist, also der Raum der Funktionen für die [mm] (\integral_{\Omega}|f(x)|^pdx)^\frac{1}{p}<\infty [/mm] ist.

a) Soweit meine Gedanken:
Wenn [mm] f\in (L^p (\Omega)\cap\L^q (\Omega)), ||f||_q \leq [/mm] 1 und [mm] 1\leq [/mm] p < q < [mm] \infty [/mm]
dann ist f [mm] \in L^q(\Omega),||f||\leq [/mm] 1
weil [mm] L^p(\Omega) \subset L^q(\Omega) [/mm]

Die Menge [mm] \{f\in ...\} [/mm] ist abgeschlossen in [mm] L^p( \Omega) [/mm] wenn [mm] L^p \setminus \{f\in ...\} [/mm] offen ist.


Bezug
                        
Bezug
Lp-Räume und abgeschlossenheit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:36 So 04.07.2010
Autor: dazivo

Hallo leute!

Erstens, glaube ich du hast vergessen zu sagen, dass dein Massraum
[mm] $(\Omega, \mathcal{F}, \mu)$ [/mm] (oder wie auch immer er genannt wird) endlich ist, denn sonst sind die [mm] $L^p$-Räume [/mm] i.A nicht ineinander enthalten, also so was wie [mm] $L^p \subseteq L^q$ [/mm] gilt nicht!

Gehen wir jetzt mal einfach davon aus, dass die Endlichkeitsannahme gegeben ist.

Zu a): Da ein normierter Vektorraum $V$ insbesondere ein metrischer Raum ist, ist eine Teilmenge $A$ genau dann abgeschlossen wenn für jede Folge in $A$ mit Grenzwert  in $V$, dieser in $A$ enthalten ist, präziser bedeutet dies:
[mm] $\forall (a_n)_{n \in \IN} \subseteq [/mm] A$ mit [mm] $\lim_{n \to \infty}a_n [/mm] = a [mm] \Rightarrow [/mm] a [mm] \in [/mm] A$.
Um dies anwenden zu können, würde ich vorschlagen, dass du den Lebesgue Konvergenzsatz in deiner Argumentation miteinbeziehst. Damit solltest du die Aufgabe a) schnell gelöst haben.

Zu b) Kann ich nur das Wiederholen, was du bereits hingeschrieben hast:
Interpolationsungleichung. Sie liefert die Aussage sofort!

Ich hoffe, ich konnte helfen

Gruss dazivo

Bezug
                                
Bezug
Lp-Räume und abgeschlossenheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 So 04.07.2010
Autor: Snarfu

Huhu, danke für die Antwort und vielen Dank für eure Geduld. Ich brate hier bei 35 Grad im Dachgeschoss vor mich hin.

Ich habe vergessen mitzuteilen das der Massraum endlich ist.

zu a)
Würde das dann etwa wie folgt aussehen?
Da p < q ist, ist [mm] L^p \subseteq L^q [/mm] und [mm] M=\{f\in L^p(\Omega\):||f||_q\leq 1\} [/mm]

zz. Für alle [mm] (f_n)_{n\in\IN}\subseteq [/mm] M mit [mm] lim_{n\to\infty}f_n=f [/mm] ist [mm] f\in [/mm] M

Mit [mm] lim_{n\to\infty}(f_n-f)=0 [/mm] ist auch [mm] lim_{n\to\infty}|f_n-f|^p=0 [/mm] da p [mm] <\infty. [/mm]

Für n groß genug wird [mm] g_n:=|f_n-f|^p [/mm] durch 1 majorisiert also kann man den Lebesgue Konvergenzsatz anwenden und erhält:

[mm] lim_{n\to\infty}\integral_{\Omega}||f_n-f|^p-0|dx=0 [/mm]
damit ist auch [mm] lim_{n\to\infty}\integral_{\Omega}|f_n-f|^p [/mm] dx=0 und [mm] f\in [/mm] M

zu b)
Aus dem Interpolationssatz folgt das [mm] ||f_n||_r\leq [/mm] 2C also [mm] f\in L^r(\Omega), [/mm] warum gilt [mm] f_n\to [/mm] f in [mm] L^r(\Omega)? [/mm]



Bezug
                                        
Bezug
Lp-Räume und abgeschlossenheit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Mo 05.07.2010
Autor: dazivo

Hallo
Im Fall, dass der Massraum endlich ist:
oBdA wir arbeiten mit einem Wahrscheinlichkeitsraum.
Die Jensen Unlgeichung sagt uns, dass für $1 [mm] \leq [/mm] p < q <  [mm] \infty [/mm] : [mm] L^q \subseteq L^p$, [/mm] denn für $f [mm] \in L^q$ [/mm] gilt [mm] $\parallel [/mm] f [mm] \parallel_p \leq \parallel [/mm] f [mm] \parallel_q$, [/mm] also $f [mm] \in L^p$. [/mm] Daraus lässt sich deine Menge $M$ schreiben als $M = [mm] \{ f \in L^q ; \parallel f \parallel_q \leq 1 \}$. [/mm] Aber diese Menge ist dank der Stetigkeit der Normabbildung $f [mm] \mapsto \parallel [/mm] f [mm] \parallel_q$ [/mm] abgeschlossen und fertig.
Ich zweifle jedoch schwer daran, dass man annehmen sollte der Massraum soll endlich sein, denn offensichtlich ist die Aufgabe dann trivial.

Nehmen wir mal für den Moment an der Massraum ist NICHT endlich. Der Fall $p =q$ ist trivial, es reduziert sich wieder alles auf die Stetigkeit der Normabbildung. Sei nun $p < q$.
Sei [mm] $(f_n)_n \subseteq [/mm] M:= [mm] \{ g \in L^p \cap L^q ; \parallel g \parallel_q \leq 1 \}$ [/mm]  mit [mm] $\lim_{n \to \infty} f_n [/mm] = f $ in [mm] $L^p$. [/mm] Zu zeigen ist dann: $f [mm] \in L^q$ [/mm] und [mm] $\parallel [/mm] f [mm] \parallel_q \leq [/mm] 1$.
Es ist klar, dass $f [mm] \in L^p$, [/mm] denn [mm] $L^p$ [/mm] ist ein Banachraum. Nach Definition ist [mm] $(f_n)_n \subseteq L^q$ [/mm] beschränkt. Da [mm] $L^q$ [/mm] reflexiv ist, existiert eine schwach konvergente Teilfolge, das heisst:
[mm] $\exists (f_{n_k})_k \subseteq (f_n)_n [/mm] $ und ein [mm] $\tilde{f} \in L^q$ [/mm] mit
[mm] $\lim_{k \to \infty} \int_{\Omega} f_{n_k} [/mm] g [mm] d\mu [/mm] = [mm] \int_{\Omega} \tilde{f} [/mm] g [mm] d\mu$ [/mm] für alle $g [mm] \in L^p$. [/mm] Dieses [mm] $\tilde{f}$ [/mm] ist aber gleich $f$, denn wiederum nach Definition konvergiert [mm] $f_n$ [/mm] schwach gegen $f$, aus dem einfachen Grund, weil sie stark gegen $f$ konvergiert: zur Erinnerung: Starke konvergenz impliziert Schwache Konvergenz. Somit konvergiert auch jede Teilfolge schwach gegen $f$. Das heisst die Folge [mm] $(f_{n_k})_k$ [/mm] konvegiert in [mm] $L^q$ [/mm] schwach gegen [mm] $\tilde{f}$ [/mm] und schwach in [mm] $L^p$ [/mm] gegen $f$. Da [mm] $L^p \cap L^q$ [/mm] dicht in [mm] $L^p$ [/mm] und in [mm] $L^q$ [/mm] und der [mm] $\mu$-f.ü [/mm] eindeutigkeit schwacher Grenzwerte, schlussfoldern wir $f = [mm] \tilde{f}$ $\mu$-f.ü. [/mm]
(Bemerkung:
1) Wieso ist [mm] $L^p \cap L^q$ [/mm] dicht in [mm] $L^p$ [/mm] und in [mm] $L^q$? [/mm]
Aus dem einfachen Grund, weil der Schnitt beider Räume die sogenannten einfachen Funktion oder Treppenfunktionen enthält und die sind nunmal dicht in den [mm] $L^r$-Räumen. [/mm]
2) Wieso können wir schlussfolgern, dass $f = [mm] \tilde{f} \mu$-f.ü? [/mm]
Die obige Diskussion zeigt [mm] $\int_{\Omega} fgd\mu [/mm] = [mm] \int_{\Omega} \tilde{f}gd\mu$ [/mm] für alle $g [mm] \in L^p \cap L^q$. [/mm] Eine einfache Übungsaufgabe, zeigt, dass falls solche eine Beziehung für eine Dichte Teilmenge gilt $A [mm] \subseteq L^p$, [/mm] (in unserem Fall $A = [mm] L^p \cap L^q$,) [/mm] so gilt sie auch auf ganz [mm] $L^p$). [/mm]
Nun haben wir gezeigt, dass der Grenzwert $f [mm] \in L^q$ [/mm] ist. Jetzt bleibt nur noch die Abschätzung [mm] $\parallel [/mm] f [mm] \parallel_q \leq [/mm] 1$ nachzuweisen. Dies ist aber jetzt einfach: Es gilt nämlich die allgemein gültige Aussage:
Konvergiert [mm] $g_n$ [/mm] schwach in einem normierten Vektorraum $(V; [mm] \parallel [/mm] . [mm] \parallel)$ [/mm] gegen $g$, so gilt [mm] $\parallel [/mm] g [mm] \parallel \leq \liminf_{n\to \infty} \parallel g_n \parallel$. [/mm]
Angewandt auf unsere Situation ergibt das die gewünschte Abschätzung sofort, indem du [mm] $\parallel \parallel$ [/mm] mit [mm] $\parallel \parallel_q$ [/mm] ersetzt, $g$ mit $f$ und [mm] $g_n$ [/mm] mit [mm] $f_{n_k}$. [/mm]

Bemerkung: Es tut mir leid, dass es so lang geworden ist. Vielleicht gibt es einen offensichtlicheren schnelleren Weg zum Ziel.

Zu b) : schau dir mal die Interpolationsungleichungen an, dann solltest du den Zusammenhang sofort sehen. Falls nicht, blätter doch mal in deinem Funktionalanalysis oder Integrationstheorie Buch zu diesem Thema herum.

Ich hoffe, ich konnte helfen!!

Grüsse dazivo

Bezug
                                                
Bezug
Lp-Räume und abgeschlossenheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Mo 05.07.2010
Autor: Snarfu

Vielen Dank für die ausführliche Eklärung!

Du hast mir sehr geholfen. Anhand deiner Ausführung ist mir auch aufgefallen das ich einen fehlerhaften Begriff von der schwachen Konvergenz hatte.

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]