www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLsg. Randwertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lsg. Randwertproblem
Lsg. Randwertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lsg. Randwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Sa 21.06.2014
Autor: Thomas_Aut

Aufgabe
Betrachte nachstehendes Randwertproblem

$y' = [mm] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y$ [/mm] mit den Randbedingungen [mm] $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) [/mm] + [mm] \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ [/mm]

Hat dieses Randwertproblem eine Lösung?

Hallo,

Nachstehend meine Lösung - ich führe sie bewusst, etwas umständlich aus (dieses Bsp. ist relativ einfach, aber das Verfahren dient zur Übung auch für komplexere Bsps)


Bestimmen wir vorerst einmal die Eigenwerte von [mm] $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ [/mm] - das char. Polynom lautet natürlich [mm] $\lambda^2$ [/mm] und damit existiert eine doppelte Nullstelle, nämlich [mm] $\lambda_{1,2} [/mm] =0$

Insofern erhalten wir als Fundamentalmatrix [mm] $\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}$ [/mm] = [mm] $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ [/mm]


Nun bestimmen wir dazu die entsprechenden Eigenvektoren , zu $ [mm] \lambda [/mm] = 0$ erhalten wir den Eigenvektor [mm] $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ [/mm]
hierzu ist ein Hauptvektor dann natürlich [mm] \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ [/mm]

Also genügt die Wronski-Matrix der Form:

[mm] $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ [/mm]

Wir setzen $ R = [mm] \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} [/mm] + [mm] \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$ [/mm]

det(R) = 0, also hat das Randwertproblem keine Lösung.

Beste Grüße und Dank

Thomas


        
Bezug
Lsg. Randwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Sa 21.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> Betrachte nachstehendes Randwertproblem
>  
> [mm]y' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y[/mm] mit den
> Randbedingungen [mm]\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> Hat dieses Randwertproblem eine Lösung?
>  Hallo,
>  
> Nachstehend meine Lösung - ich führe sie bewusst, etwas
> umständlich aus (dieses Bsp. ist relativ einfach, aber das
> Verfahren dient zur Übung auch für komplexere Bsps)
>  
>
> Bestimmen wir vorerst einmal die Eigenwerte von
> [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}[/mm] - das char.
> Polynom lautet natürlich [mm]\lambda^2[/mm] und damit existiert
> eine doppelte Nullstelle, nämlich [mm]\lambda_{1,2} =0[/mm]
>  
> Insofern erhalten wir als Fundamentalmatrix [mm]\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  
>
> Nun bestimmen wir dazu die entsprechenden Eigenvektoren ,
> zu [mm]\lambda = 0[/mm] erhalten wir den Eigenvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  


[mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm] is kein Eigenvektor
zum Eigenwert [mm]\lambda=0[/mm], denn

[mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} \not= \begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]


> hierzu ist ein Hauptvektor dann natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}$[/mm]
>  
> Also genügt die Wronski-Matrix der Form:
>  
> [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  
> Wir setzen [mm]R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> det(R) = 0, also hat das Randwertproblem keine Lösung.
>  
> Beste Grüße und Dank
>
> Thomas
>  


Gruss
MathePower

Bezug
                
Bezug
Lsg. Randwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 21.06.2014
Autor: Thomas_Aut


> Hallo Thomas_Aut,
>  
> > Betrachte nachstehendes Randwertproblem
>  >  
> > [mm]y' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y[/mm] mit den
> > Randbedingungen [mm]\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

> > Hat dieses Randwertproblem eine Lösung?
>  >  Hallo,
>  >  
> > Nachstehend meine Lösung - ich führe sie bewusst, etwas
> > umständlich aus (dieses Bsp. ist relativ einfach, aber das
> > Verfahren dient zur Übung auch für komplexere Bsps)
>  >  
> >
> > Bestimmen wir vorerst einmal die Eigenwerte von
> > [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}[/mm] - das char.
> > Polynom lautet natürlich [mm]\lambda^2[/mm] und damit existiert
> > eine doppelte Nullstelle, nämlich [mm]\lambda_{1,2} =0[/mm]
>  >  
> > Insofern erhalten wir als Fundamentalmatrix [mm]\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}[/mm]
> > = [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  
> >
> > Nun bestimmen wir dazu die entsprechenden Eigenvektoren ,
> > zu [mm]\lambda = 0[/mm] erhalten wir den Eigenvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

>
>
> [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm] is kein Eigenvektor
>  zum Eigenwert [mm]\lambda=0[/mm], denn
>  
> [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} \not= \begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]

Da hast du natürlich recht - der Eigenvektor muss natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}[/mm] lauten und damit ist der Hauptvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm].

>  
>
> > hierzu ist ein Hauptvektor dann natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}$[/mm]
>  
> >  

> > Also genügt die Wronski-Matrix der Form:
>  >  
> > [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  
> > Wir setzen [mm]R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> >  

> > det(R) = 0, also hat das Randwertproblem keine Lösung.
>  >  
> > Beste Grüße und Dank
> >
> > Thomas
>  >  

>

Das sollte allerdings nichts am Rest ändern?

Gruß
Thomas

>
> Gruss
>  MathePower

Bezug
                        
Bezug
Lsg. Randwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 21.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> > Hallo Thomas_Aut,
>  >  
> > > Betrachte nachstehendes Randwertproblem
>  >  >  
> > > [mm]y' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y[/mm] mit den
> > > Randbedingungen [mm]\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

> > >  

> > > Hat dieses Randwertproblem eine Lösung?
>  >  >  Hallo,
>  >  >  
> > > Nachstehend meine Lösung - ich führe sie bewusst, etwas
> > > umständlich aus (dieses Bsp. ist relativ einfach, aber das
> > > Verfahren dient zur Übung auch für komplexere Bsps)
>  >  >  
> > >
> > > Bestimmen wir vorerst einmal die Eigenwerte von
> > > [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}[/mm] - das char.
> > > Polynom lautet natürlich [mm]\lambda^2[/mm] und damit existiert
> > > eine doppelte Nullstelle, nämlich [mm]\lambda_{1,2} =0[/mm]
>  >  
> >  

> > > Insofern erhalten wir als Fundamentalmatrix [mm]\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}[/mm]
> > > = [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  >  
> > >
> > > Nun bestimmen wir dazu die entsprechenden Eigenvektoren ,
> > > zu [mm]\lambda = 0[/mm] erhalten wir den Eigenvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

> > >  

> >
> >
> > [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm] is kein Eigenvektor
>  >  zum Eigenwert [mm]\lambda=0[/mm], denn
>  >  
> > [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} \not= \begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]
>  
> Da hast du natürlich recht - der Eigenvektor muss
> natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}[/mm] lauten und
> damit ist der Hauptvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm].
>  
> >  

> >
> > > hierzu ist ein Hauptvektor dann natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}$[/mm]
>  
> >  

> > >  

> > > Also genügt die Wronski-Matrix der Form:
>  >  >  
> > > [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  >  
> > > Wir setzen [mm]R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> >  

> > >  

> > > det(R) = 0, also hat das Randwertproblem keine Lösung.
>  >  >  
> > > Beste Grüße und Dank
> > >
> > > Thomas
>  >  >  
> >
>  
> Das sollte allerdings nichts am Rest ändern?
>  


So ist es.


> Gruß
> Thomas
> >
> > Gruss
>  >  MathePower  


Gruss
MathePower

Bezug
                                
Bezug
Lsg. Randwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:58 Sa 21.06.2014
Autor: Thomas_Aut

Super, danke vielmals für die Korrektur.


Lg Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]