MOD < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:32 Fr 23.11.2007 | Autor: | damien_ |
Aufgabe | Aufgabe 9:
Lösen Sie x=2 mod 3, x=1 mod 5 und x=3 mod 7 mit x [mm] \in \IZ
[/mm]
Aufgabe 10:
In welchem maximalen Bereich ist die Lösung von Aufgabe 9 eindeutig. |
Lösungen für Aufgabe 9 hätte ich
x=5
x=6
x=10
aber wie ist das mit dem Zahlenbereich gemeint!
|
|
|
|
> Aufgabe 9:
> Lösen Sie x=2 mod 3, x=1 mod 5 und x=3 mod 7 mit x [mm]\in \IZ[/mm]
>
> Aufgabe 10:
> In welchem maximalen Bereich ist die Lösung von Aufgabe 9
> eindeutig.
> Lösungen für Aufgabe 9 hätte ich
> x=5
> x=6
> x=10
>
> aber wie ist das mit dem Zahlenbereich gemeint!
Hallo,
ich meine, daß bei Aufg. 9 eher simultane Kongruenzen gemeint sind, daß Du also x so bestimmen sollst, daß alle drei Kongruenzen gleichzeitig erfüllt sind.
Dann ist nämlich auch Aufg. 10 sinnvoll.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:29 So 25.11.2007 | Autor: | damien_ |
ich kann jetzt also das x mit dem chinesischen restsatz bestimmen... der maximale bereich ist mir aber weiterhin unklar?
|
|
|
|
|
> ich kann jetzt also das x mit dem chinesischen restsatz
> bestimmen... der maximale bereich ist mir aber weiterhin
> unklar?
Hallo,
mit dem chinesischen Restsatz bekommt man, wenn ich mich recht entsinne, ja ein ganzes Bündel v. Lösungen, und Du sollst nun den zulässigen Bereich für x so eingrenzen, daß die Lösung eindeutig ist.
Gruß v. Angela
|
|
|
|