MSE wirksamer < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:30 Mi 11.07.2012 | Autor: | Katze_91 |
Aufgabe | Sei [mm] X_1, [/mm] ... [mm] X_n [/mm] (iid) eine Stichprobe aus der Gleichverteilung auf [0, [mm] \theta
[/mm]
Betrachten Sie die folgenden Schätzer
[mm] \theta_1 =2\overline{X} \theta_2=(\bruch{n+1}{n})X_{(n)}
[/mm]
1. sind [mm] \theta_1 [/mm] und [mm] \theta_2 [/mm] erwartungstreu
2. bestimmen sie, welcher der beiden Schätzer MSE-wirksamer ist |
Hey, bei der Aufgabe dachte ich war, dass ich keine Probleme hätte aber irgendwie klappt was bei der 2. nicht
1. hab ich die erwartungswerte ausgerechnet und beides ist treu
jetzt bei der zwei beim ersten [mm] \theta
[/mm]
ich hab erst mit binayme argumentiert und dann ist ja
[mm] MSE(\theta_1)= var(\theta_1)= \bruch{4}{n^2} var(\summe_{i=1}^{n} X_i)=\bruch{4}{n^2} \summe_{i=1}^{n}var( X_i)=\bruch{4}{n^2}*n*\bruch{\theta^2}{12}=\bruch{1}{3n}\theta^2
[/mm]
aber wenn ich das alles anderes aussrechne also:
Nach Definition:
[mm] $$MSE(\hat \Theta_1) [/mm] := E[ [mm] (\hat \Theta_1 [/mm] - [mm] \Theta)^2 [/mm] ]
= E[ (2 [mm] \bar{X} [/mm] - [mm] \Theta)^2 [/mm] ]
= E[ 4 [mm] \bar X^2 [/mm] - 4 [mm] \bar{X} \Theta [/mm] + [mm] \Theta^2]
[/mm]
= 4 [mm] E[\bar X^2] [/mm] - 4 [mm] \Theta E[\bar{X}] [/mm] + [mm] \Theta^2.$$
[/mm]
Es gilt:
$$E [mm] [\bar X^2] [/mm] = E [mm] \left[ \frac 1 {n^2} \left( \sum\limits_{i=1}^n x_i \right)^2 \right]
[/mm]
= [mm] \frac{ 1 }{n^2} [/mm] E [mm] \left[ \left( \sum\limits_{i=1}^n x_i \right)^2 \right]
[/mm]
$$ $$= [mm] \frac{ 1 }{n^2} [/mm] E [mm] \left[ \sum\limits_{i=1}^n x_i^2 + 2 \sum\limits_{i=1}^n \sum\limits_{j=i+1}^n x_i x_j \right]
[/mm]
= [mm] \frac{ 1 }{n^2} \left( \sum\limits_{i=1}^n E[x_i^2] + 2 \sum\limits_{i=1}^n \sum\limits_{j=i+1}^n E[x_i] E[x_j] \right)
[/mm]
$$ $$= [mm] \frac{ 1 }{n^2} \left( \frac {\Theta^3} 4 n + 2 \frac {\Theta^2}4 \frac 12 (n-1) n \right)
[/mm]
= [mm] \frac {\Theta^3}{4n} [/mm] + [mm] \frac{n-1}{n} \frac {\Theta^2}{4}$$
[/mm]
Und:
[mm] $$E[\bar [/mm] X] = [mm] \frac \Theta [/mm] 2.$$
Damit:
[mm] $$MSE(\hat \Theta_1) [/mm] = 4 [mm] \left( \frac{\Theta^3}{4n} + \frac{n-1}{n} \frac{\Theta^2}{4} \right) [/mm] - 4 [mm] \Theta \cdot \frac{\Theta}{2} [/mm] + [mm] \Theta^2
[/mm]
= [mm] \frac{\Theta^3}n [/mm] + [mm] \frac{n-1}{n} \Theta^2 [/mm] - 2 [mm] \Theta^2 [/mm] + [mm] \Theta^2
[/mm]
= [mm] \frac{\Theta^3}{n} [/mm] - [mm] \frac{\Theta^2}{n}.$$
[/mm]
Wo ist der Fehler :(??
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:48 Do 12.07.2012 | Autor: | luis52 |
Moin, bei deiner laenglichen Rechnung erhaeltst du an einer Stelle [mm] $\operatorname{E}[x_i^2]=\theta^3/4$. [/mm] Hier muss es [mm] \theta^2/4 [/mm] heissen.
Warum nutzt du nicht die alte Bauernregel [mm] $\operatorname{E}[\bar X^2]=\operatorname{Var}[\bar X]+\operatorname{E}^2[\bar [/mm] X]$?
vg Luis
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:30 Do 12.07.2012 | Autor: | Katze_91 |
Hi ^^
mir gings darum, dass ich einfach nirgendwo einen Fehler gefunden habe :)
aber die Rechnung wird halt falsch, wenn ich statt der Dichte die Verteilungsfunktion in die Formel $$E[X]= [mm] \int_{\Omega} [/mm] x f(x) dx $$ einsetze...
auf jeden fall danke für die Mühe ^^
|
|
|
|