www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnung(M*K)= det(M)*det(K)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - (M*K)= det(M)*det(K)
(M*K)= det(M)*det(K) < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(M*K)= det(M)*det(K): Beweis der Formel?
Status: (Frage) beantwortet Status 
Datum: 16:42 Di 05.09.2006
Autor: Hollyane

Aufgabe
Beweise: det (M*K)= det(M)*det(K)

Hi!

Ich habe mir mal gedacht, dass jede Matrix ja eine bestimmte Determinante hat, die sich berechnen lässt:

Det M=ad-bc und Det K=ad-bc.

Demnach: det(M*K)= (ad-bc)*(ad-bc)
das macht dann: det(M*K)=a²d²-2a²d²b²c²+b²c²

aber was macht man denn mit der linken Seite, damit sich das ganze ein wenig wegkürzt . Oder ist der Ansatz ganz falsch?



(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. )

        
Bezug
(M*K)= det(M)*det(K): Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Di 05.09.2006
Autor: Fulla

hi Hollyane

ich nehme an, du sollst das "nur" für 2x2-matrizen beweisen....?

dein ansatz ist schon gar nicht schlecht, aber wenn jede matrix eine bestimmte determinante hat, warum haben bei dir M und K dieselbe?

besser:

[mm] M=\pmat{a&b\\c&d} [/mm] und [mm] K=\pmat{e&f\\g&h} [/mm]

damit berechnest du [mm]det(M*K)[/mm] und [mm]det(M)*det(K)[/mm]...

lieben gruß,
Fulla

Bezug
                
Bezug
(M*K)= det(M)*det(K): Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Di 05.09.2006
Autor: Hollyane

klingt sehr einleuchtend *lol*

Hab auf beiden Seiten:
adeh+bceh+bcfg+adfg raus.

LG

...

Bezug
                        
Bezug
(M*K)= det(M)*det(K): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Mi 06.09.2006
Autor: Fulla

schon mal nicht schlecht, aber besser wäre

[mm]det(M*K)=det(M)*det(K)=adeh-bceh+bcfg-adfg[/mm]

sicher hast du die minuszeichen nur aufgrund eines leichtsinnsfehlers vergessen^^

schöne grüße,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]